咨询与建议

限定检索结果

文献类型

  • 1,115 篇 会议
  • 696 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,814 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,187 篇 工学
    • 915 篇 计算机科学与技术...
    • 804 篇 软件工程
    • 223 篇 信息与通信工程
    • 132 篇 生物工程
    • 131 篇 控制科学与工程
    • 107 篇 机械工程
    • 87 篇 光学工程
    • 73 篇 生物医学工程(可授...
    • 61 篇 电气工程
    • 61 篇 电子科学与技术(可...
    • 54 篇 化学工程与技术
    • 37 篇 仪器科学与技术
    • 27 篇 建筑学
    • 26 篇 农业工程
    • 22 篇 交通运输工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 土木工程
  • 599 篇 理学
    • 356 篇 数学
    • 158 篇 生物学
    • 142 篇 物理学
    • 95 篇 统计学(可授理学、...
    • 52 篇 化学
    • 32 篇 系统科学
  • 377 篇 管理学
    • 240 篇 图书情报与档案管...
    • 146 篇 管理科学与工程(可...
    • 42 篇 工商管理
  • 59 篇 医学
    • 47 篇 临床医学
    • 35 篇 基础医学(可授医学...
  • 34 篇 农学
    • 30 篇 作物学
  • 27 篇 法学
    • 23 篇 社会学
  • 19 篇 经济学
  • 11 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 92 篇 semantics
  • 85 篇 feature extracti...
  • 70 篇 information proc...
  • 68 篇 training
  • 57 篇 laboratories
  • 52 篇 computers
  • 46 篇 face recognition
  • 42 篇 humans
  • 41 篇 visualization
  • 38 篇 computational mo...
  • 35 篇 computer vision
  • 34 篇 data mining
  • 33 篇 object detection
  • 33 篇 machine learning
  • 31 篇 image segmentati...
  • 30 篇 decoding
  • 28 篇 deep learning
  • 26 篇 data models
  • 26 篇 robustness
  • 25 篇 support vector m...

机构

  • 439 篇 key laboratory o...
  • 299 篇 university of ch...
  • 83 篇 key laboratory o...
  • 65 篇 peng cheng labor...
  • 64 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 49 篇 key laboratory o...
  • 48 篇 graduate univers...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 34 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 101 篇 zhongzhi shi
  • 99 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 77 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 43 篇 he qing
  • 41 篇 feng yang
  • 37 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 34 篇 zhuge hai
  • 33 篇 qingming huang
  • 32 篇 jiang shuqiang
  • 32 篇 liu yang
  • 32 篇 cao juan
  • 31 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,691 篇 英文
  • 86 篇 其他
  • 41 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing Institute of Computing Technology"
1814 条 记 录,以下是411-420 订阅
排序:
A Prompting-based Approach for Adversarial Example Generation and Robustness Enhancement
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Yuting Huang, Pei Cao, Juan Li, Jintao Lin, Yun Dong, Jin Song Ma, Feifei Zhang, Jian Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Beijing China National University of Singapore Singapore Laboratory of Parallel Software and Computational Science ISCAS Beijing China
Recent years have seen the wide application of NLP models in crucial areas such as finance, medical treatment, and news media, raising concerns of the model robustness and vulnerabilities. In this paper, we propose a ... 详细信息
来源: 评论
Deep Learning for Logo Detection: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Sujuan Li, Jiacheng Min, Weiqing Hou, Qiang Zhao, Yanna Zheng, Yuanjie Jiang, Shuqiang School of Information Science and Engineering Shandong Normal University Shandong250358 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology China Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
When logos are increasingly created, logo detection has gradually become a research hotspot across many domains and tasks. Recent advances in this area are dominated by deep learning-based solutions, where many datase... 详细信息
来源: 评论
Self-Mutual Distillation Learning for Continuous Sign Language Recognition
Self-Mutual Distillation Learning for Continuous Sign Langua...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Aiming Hao Yuecong Min Xilin Chen Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China
In recent years, deep learning moves video-based Continuous Sign Language Recognition (CSLR) significantly forward. Currently, a typical network combination for CSLR includes a visual module, which focuses on spatial ... 详细信息
来源: 评论
Gaussian-Hermite Moment Invariants of General Multi-Channel Functions
arXiv
收藏 引用
arXiv 2022年
作者: Mo, Hanlin Li, Hua Zhao, Guoying The Center for Machine Vision and Signal Analysis University of Oulu OuluFI-90014 Finland The Key lab of Intelligent Information Processing The Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China The School of Information and Technology Northwest University Xi'An710069 China
With the development of data acquisition technology, large amounts of multi-channel data are collected and widely used in many fields. Most of them, such as RGB images and vector fields, can be expressed as different ... 详细信息
来源: 评论
Modeling human travel and social contact with multi-layer networks for epidemic prediction  9
Modeling human travel and social contact with multi-layer ne...
收藏 引用
9th IEEE International Conference on Bioinformatics and Computational Biology, ICBCB 2021
作者: Duan, Wei Wang, Tao Wang, Peng Ju, Rusheng Wang, Xiao Yang, Tian College of Systems Engineering National University of Defense Technology Changsha City China State Key Laboratry of Complex Systems Management and Control Institute of Automation Chinese Academy of Sciences Beijing City China Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha City China
It is a key issue to reasonably represent human travel and social contact in epidemic models. Various measures were applied to develop the models of human mobility and contact in a long range or a short range, such as... 详细信息
来源: 评论
Learning to Distill Global Representation for Sparse-View CT
Learning to Distill Global Representation for Sparse-View CT
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zilong Li Chenglong Ma Jie Chen Junping Zhang Hongming Shan Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai China
Sparse-view computed tomography (CT)—using a small number of projections for tomographic reconstruction—enables much lower radiation dose to patients and accelerated data acquisition. The reconstructed images, howev...
来源: 评论
Twin Contrastive Learning with Noisy labels
Twin Contrastive Learning with Noisy Labels
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhizhong Huang Junping Zhang Hongming Shan Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai China
Learning from noisy data is a challenging task that sig-nificantly degenerates the model performance. In this paper, we present TCL, a novel twin contrastive learning model to learn robust representations and handle n...
来源: 评论
Dist-PU: Positive-Unlabeled Learning from a label Distribution Perspective
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Yunrui Xu, Qianqian Jiang, Yangbangyan Wen, Peisong Huang, Qingming School of Computer Science and Technology University of Chinese Academy of Sciences China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS China State Key Laboratory of Information Security Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China
Positive-Unlabeled (PU) learning tries to learn binary classifiers from a few labeled positive examples with many unlabeled ones. Compared with ordinary semi-supervised learning, this task is much more challenging due... 详细信息
来源: 评论
Hard-instance learning for quantum adiabatic prime factorization
收藏 引用
Physical Review A 2022年 第6期105卷 062455-062455页
作者: Jian Lin Zhengfeng Zhang Junping Zhang Xiaopeng Li State Key Laboratory of Surface Physics Institute of Nanoelectronics and Quantum Computing and Department of Physics Fudan University Shanghai 200433 China Shanghai Key Lab of Intelligent Information Processing and School of Computer Science Fudan University Shanghai 200433 China Shanghai Qi Zhi Institute Xuhui District Shanghai 200032 China Shanghai Research Center for Quantum Sciences Shanghai 201315 China
Prime factorization is a difficult problem with classical computing, whose exponential hardness is the foundation of Rivest-Shamir-Adleman cryptography. With programable quantum devices, adiabatic quantum computing ha... 详细信息
来源: 评论
Adaptive Nonlinear Latent Transformation for Conditional Face Editing
Adaptive Nonlinear Latent Transformation for Conditional Fac...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zhizhong Huang Siteng Ma Junping Zhang Hongming Shan Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai China
Recent works for face editing usually manipulate the latent space of StyleGAN via the linear semantic directions. However, they usually suffer from the entanglement of facial attributes, need to tune the optimal editi...
来源: 评论