咨询与建议

限定检索结果

文献类型

  • 1,110 篇 会议
  • 696 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,809 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,182 篇 工学
    • 909 篇 计算机科学与技术...
    • 803 篇 软件工程
    • 222 篇 信息与通信工程
    • 130 篇 生物工程
    • 124 篇 控制科学与工程
    • 108 篇 机械工程
    • 89 篇 光学工程
    • 71 篇 生物医学工程(可授...
    • 63 篇 电气工程
    • 62 篇 电子科学与技术(可...
    • 54 篇 化学工程与技术
    • 37 篇 仪器科学与技术
    • 28 篇 建筑学
    • 26 篇 农业工程
    • 22 篇 交通运输工程
    • 21 篇 材料科学与工程(可...
    • 21 篇 土木工程
  • 600 篇 理学
    • 358 篇 数学
    • 158 篇 生物学
    • 142 篇 物理学
    • 95 篇 统计学(可授理学、...
    • 49 篇 化学
    • 32 篇 系统科学
  • 378 篇 管理学
    • 240 篇 图书情报与档案管...
    • 147 篇 管理科学与工程(可...
    • 42 篇 工商管理
  • 57 篇 医学
    • 45 篇 临床医学
    • 35 篇 基础医学(可授医学...
  • 34 篇 农学
    • 30 篇 作物学
  • 28 篇 法学
    • 24 篇 社会学
  • 19 篇 经济学
  • 11 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 92 篇 semantics
  • 85 篇 feature extracti...
  • 70 篇 information proc...
  • 68 篇 training
  • 57 篇 laboratories
  • 52 篇 computers
  • 46 篇 face recognition
  • 42 篇 humans
  • 41 篇 visualization
  • 38 篇 computational mo...
  • 35 篇 computer vision
  • 34 篇 data mining
  • 33 篇 object detection
  • 33 篇 machine learning
  • 31 篇 image segmentati...
  • 30 篇 decoding
  • 28 篇 deep learning
  • 26 篇 data models
  • 26 篇 robustness
  • 25 篇 support vector m...

机构

  • 435 篇 key laboratory o...
  • 296 篇 university of ch...
  • 83 篇 key laboratory o...
  • 65 篇 peng cheng labor...
  • 64 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 48 篇 key laboratory o...
  • 48 篇 graduate univers...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 34 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 101 篇 zhongzhi shi
  • 99 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 77 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 41 篇 he qing
  • 40 篇 feng yang
  • 37 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 34 篇 zhuge hai
  • 33 篇 jiang shuqiang
  • 33 篇 qingming huang
  • 32 篇 liu yang
  • 32 篇 cao juan
  • 31 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,700 篇 英文
  • 71 篇 其他
  • 42 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing Institute of Computing Technology"
1809 条 记 录,以下是821-830 订阅
排序:
Corrigendum to “Discovering and learning sensational episodes of news events” [information Systems 78 (2018) 68–80]
收藏 引用
information Systems 2019年 81卷 178-178页
作者: Xiang Ao Ping Luo Chengkai Li Fuzhen Zhuang Qing He Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Texas at Arlington USA
来源: 评论
NTIRE 2020 Challenge on Image and Video Deblurring
arXiv
收藏 引用
arXiv 2020年
作者: Seungjun, Nah Sanghyun, Son Radu, Timofte Kyoung Mu, Lee Tseng, Yu Xu, Yu-Syuan Chiang, Cheng-Ming Tsai, Yi-Min Brehm, Stephan Scherer, Sebastian Xu, Dejia Chu, Yihao Sun, Qingyan Jiang, Jiaqin Duan, Lunhao Yao, Jian Purohit, Kuldeep Suin, Maitreya Rajagopalan, A.N. Ito, Yuichi Hrishikesh, P.S. Puthussery, Densen Akhil, K.A. Jiji, C.V. Kim, Guisik Deepa, P.L. Xiong, Zhiwei Huang, Jie Liu, Dong Kim, Sangmin Nam, Hyungjoon Kim, Jisu Jeong, Jechang Huang, Shihua Fan, Yuchen Yu, Jiahui Yu, Haichao Huang, Thomas S. Zhou, Ya Li, Xin Liu, Sen Chen, Zhibo Dutta, Saikat Das, Sourya Dipta Garg, Shivam Sprague, Daniel Patel, Bhrij Huck, Thomas Department of ECE ASRI SNU Korea Republic of Computer Vision Lab ETH Zurich Switzerland MediaTek Inc University of Augsburg Chair for Multimedia Computing and Computer Vision Lab Germany Peking University China Beijing University of Posts and Telecommunications China Beijing Jiaotong University China Wuhan University China Indian Institute of Technology Madras India Vermilion College of Engineering Trivandrum India CVML Chung-Ang University Korea Republic of APJ Abdul Kalam Technological University India University of Science and Technology of China China Image Communication Signal Processing Laboratory Hanyang University Korea Republic of Southern University of Science and Technology China University of Illinois at Urbana-Champaign United States CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China China IIT Madra Jadavpur University India University of Texas Austin United States Duke University Computer Science Department United States
Motion blur is one of the most common degradation artifacts in dynamic scene photography. This paper reviews the NTIRE 2020 Challenge on Image and Video Deblurring. In this challenge, we present the evaluation results... 详细信息
来源: 评论
Review of intelligent computing application  1st
Review of intelligent computing application
收藏 引用
1st International Conference on Smart Vehicular technology, Transportation, Communication and Applications, VTCA 2017
作者: Wang, Yiou Liu, Tianyuan Zhang, Fuquan Xu, Lin Ding, Gangyi Xiong, Rui Liu, Fei Beijing Institute of Science and Technology Information Beijing100044 China Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Digital Performance and Simulation Technology Lab. School of Software Beijing Institute of Technology Beijing100081 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang Univeristy Fuzhou350121 China Innovative Information Industry Research Institute Fujian Normal University Fuzhou350300 China
intelligent computing systems can automatically sense environmental changes in the sensor network, make judgments and prediction on the environmental status in time, and provide response strategies in different enviro... 详细信息
来源: 评论
Less but Better: Generalization enhancement of ordinal embedding via distributional margin
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Ke Xu, Qianqian Yang, Zhiyong Cao, Xiaochun State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security University of Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences
In the absence of prior knowledge, ordinal embedding methods obtain new representation for items in a low-dimensional Euclidean space via a set of quadruple-wise comparisons. These ordinal comparisons often come from ... 详细信息
来源: 评论
Robust ordinal embedding from contaminated relative comparisons
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Ke Xu, Qianqian Cao, Xiaochun State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security University of Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences
Existing ordinal embedding methods usually follow a two-stage routine: outlier detection is first employed to pick out the inconsistent comparisons;then an embedding is learned from the clean data. However, learning i... 详细信息
来源: 评论
A Delay-Aware Congestion Control Protocol for Wireless Sensor Networks
收藏 引用
Chinese Journal of Electronics 2017年 第3期26卷 591-599页
作者: PEI Tingrui LEI Fangqing LI Zhetao ZHU Gengming PENG Xin Youngjune CHOI Hiroo SEKIYA The College of Information Engineering Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University School of Computer Science & Engineering Hunan University of Science and Technology College of Information and Communication Engineering Hunan Institute of Science and Technology Department of Information and Computer Engineering Ajou University Graduate School of Engineering Chiba University
In wireless sensor networks,congestion leads to buffer overflowing,and increases *** traditional solutions use rate adjustment to mitigate congestion,thus increasing the delay.A Delay-aware congestion control protocol... 详细信息
来源: 评论
Self-Evolutionary Neuron Model for Fast-Response Spiking Neural Networks
TechRxiv
收藏 引用
TechRxiv 2019年
作者: Zhang, Anguo Han, Ying Hu, Jing Niu, Yuzhen Gao, Yueming Chen, Zhizhang Zhao, Kai College of Physics and Information Engineering Fuzhou University Fujian350108 China The Key Laboratory of Medical Instrumentation Pharmaceutical Technology of Fujian Province Fuzhou350116 China Research Institute of Ruijie Ruijie Networks Co. Ltd Fujian350002 China School of Public Health Xiamen University Xiamen361102 China College of Information and Intelligent Transportation Fujian Chuanzheng Communications College Fuzhou350007 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing College of Mathematics and Computer Science Fuzhou University The Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fujian350108 China College of Physics and information Engineering Fuzhou University the Key Laboratory of Medical Instrumentation Pharmaceutical Technology of Fujian Province Fujian350108 China College of Physics and Information Engineering Fuzhou University 350108 China Faculty of Science and Technology University of Macau 999078 China
We propose two simple and effective spiking neuron models to improve the response time of the conventional spiking neural network. The proposed neuron models adaptively tune the presynaptic input current depending on ... 详细信息
来源: 评论
CONTINUITY-DISCRIMINATION CONVOLUTIONAL NEURAL NETWORK FOR VISUAL OBJECT TRACKING
CONTINUITY-DISCRIMINATION CONVOLUTIONAL NEURAL NETWORK FOR V...
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Shen Li Bingpeng Ma Hong Chang Shiguang Shan Xilin Chen Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Bejing China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing China
This paper proposes a novel model, named Continuity-Discrimination Convolutional Neural Network (CD-CNN), for visual object tracking. Existing state-of-the-art tracking methods do not deal with temporal relationship i... 详细信息
来源: 评论
Pixels Matching in No Obvious Feature Area in Binocular Vision Based on Peripheral Feature Points
Pixels Matching in No Obvious Feature Area in Binocular Visi...
收藏 引用
International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)
作者: Renlong Chen Mingjun Liu Xueyan Gong Jinping Li School of Information Science and Engineering Shandong Provincial Key Laboratory of Network Based Intelligent Computing (University of Jinan) Shandong College and University Key Laboratory of Information Processing and Cognitive Computing in 13th Five-year Jinan China Qilu Institute of Technology Shandong Provincial Key Laboratory of Network Based Intelligent Computing (University of Jinan) Shandong College and University Key Laboratory of Information Processing and Cognitive Computing in 13th Five-year Jinan China
In binocular vision, the pixel matching of no obvious feature refers to the matching of pixels in the area where the gray value does not change significantly or in the area where there is no significant gradient chang... 详细信息
来源: 评论
An Image Denoising Method Based on Deep Residual GAN
收藏 引用
Journal of Physics: Conference Series 2020年 第3期1550卷
作者: Ziyuan Wang Lidan Wang Shukai Duan Yunfei Li Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing Chongqing 400715 China Schoolof Electronic and information engineering Southwest University Chongqing400715 China College of Artificiall Intelligence Southwest University Chongqing 400715 China Braininspired Computing & Intelligent Control of Chongqing Key Lab Chongqing 400715 China National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology Chongqing 400715 China Chongqing Brain Science Collaborative Innovation Center Chongqing 400715 China
As people come into contact with image data more often, high quality and clear images attract more attention. Many methods have been proposed to deal with image noise problem including deep learning (DL). However most...
来源: 评论