咨询与建议

限定检索结果

文献类型

  • 547 篇 会议
  • 424 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 972 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 643 篇 工学
    • 422 篇 计算机科学与技术...
    • 361 篇 软件工程
    • 138 篇 信息与通信工程
    • 75 篇 生物工程
    • 69 篇 电子科学与技术(可...
    • 67 篇 控制科学与工程
    • 65 篇 光学工程
    • 60 篇 机械工程
    • 52 篇 化学工程与技术
    • 49 篇 电气工程
    • 42 篇 生物医学工程(可授...
    • 37 篇 仪器科学与技术
    • 35 篇 材料科学与工程(可...
    • 20 篇 安全科学与工程
    • 14 篇 交通运输工程
    • 13 篇 航空宇航科学与技...
  • 344 篇 理学
    • 174 篇 数学
    • 107 篇 物理学
    • 95 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 53 篇 化学
    • 14 篇 系统科学
  • 206 篇 管理学
    • 127 篇 图书情报与档案管...
    • 88 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 36 篇 医学
    • 26 篇 临床医学
    • 16 篇 基础医学(可授医学...
  • 17 篇 法学
    • 16 篇 社会学
  • 16 篇 农学
    • 13 篇 作物学
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 3 篇 军事学

主题

  • 50 篇 semantics
  • 36 篇 training
  • 31 篇 feature extracti...
  • 21 篇 computer vision
  • 19 篇 object detection
  • 19 篇 visualization
  • 18 篇 deep learning
  • 18 篇 computational mo...
  • 16 篇 data models
  • 14 篇 data mining
  • 13 篇 deep neural netw...
  • 13 篇 image segmentati...
  • 13 篇 robustness
  • 12 篇 face recognition
  • 11 篇 convolution
  • 11 篇 optimization
  • 10 篇 reinforcement le...
  • 10 篇 neural networks
  • 10 篇 machine learning
  • 10 篇 detectors

机构

  • 114 篇 university of ch...
  • 64 篇 key lab of intel...
  • 60 篇 shanghai key lab...
  • 52 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 24 篇 school of comput...
  • 24 篇 microsoft resear...
  • 23 篇 shanghai enginee...
  • 21 篇 key laboratory o...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 19 篇 shanghai key lab...
  • 18 篇 shanghai collabo...
  • 18 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 16 篇 advanced technol...
  • 15 篇 key lab. of inte...
  • 15 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...

作者

  • 32 篇 huang qingming
  • 31 篇 zhang wenqiang
  • 30 篇 zhuge hai
  • 25 篇 jiang yu-gang
  • 24 篇 cao juan
  • 24 篇 xilin chen
  • 21 篇 wu zuxuan
  • 19 篇 liu qun
  • 18 篇 shiguang shan
  • 18 篇 xu qianqian
  • 18 篇 gao wen
  • 15 篇 sang shengbo
  • 15 篇 cao xiaochun
  • 14 篇 chen zhaoyu
  • 14 篇 yang zhiyong
  • 14 篇 yu-gang jiang
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 14 篇 sheng qiang
  • 13 篇 wang yan

语言

  • 901 篇 英文
  • 53 篇 其他
  • 25 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing and Advanced Computing Research Lab"
972 条 记 录,以下是201-210 订阅
Fixation guided network for salient object detection  2
Fixation guided network for salient object detection
收藏 引用
2nd ACM International Conference on Multimedia in Asia, MMAsia 2020
作者: Cui, Zhe Su, Li Zhang, Weigang Huang, Qingming University of Chinese Academy of Sciences China Harbin Institute of Technology Weihai China University of Chinese Academy of Sciences Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China
Convolutional neural network (CNN) based salient object detection (SOD) has achieved great development in recent years. However, in some challenging cases, i.e. small-scale salient object, low contrast salient object ... 详细信息
来源: 评论
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition  27
VANER: Leveraging Large Language Model for Versatile and Ada...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Bian, Junyi Zhai, Weiqi Huang, Xiaodi Zheng, Jiaxuan Zhu, Shanfeng School of Computer Science Fudan University Shanghai200433 China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China Ministry of Education Shanghai200433 China MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Zhangjiang Fudan International Innovation Center Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai200433 China School of Computing and Mathematics Charles Sturt University AlburyNSW2640 Australia
The prevalent solution for BioNER involves using representation learning techniques combined with sequence ***, such methods are inherently task-specific, demonstrate poor generalizability, and often require a dedicat... 详细信息
来源: 评论
An End-to-End Text Spotting Model for Vertical and Multi-Line Codes
SSRN
收藏 引用
SSRN 2023年
作者: Chen, Pingping You, Suo Chen, Honghui Jiang, Mengxi School of advanced manufacturing Fuzhou University Fujian Fuzhou362251 China National Joint Engineering Research Center of Video Processing and Communications Fuzhou University Fujian Fuzhou350108 China Key Lab for Intelligent Processing and Wireless Transmission of Media Information Fuzhou University Fujian Fuzhou350108 China
Scene text detection (STR) attracts much attention in computer vision and is widely used in real-time applications. Though many methods have been proposed for horizontal and oriented texts, STR frameworks for spotting... 详细信息
来源: 评论
StableAnimator: High-Quality Identity-Preserving Human Image Animation
arXiv
收藏 引用
arXiv 2024年
作者: Tu, Shuyuan Xing, Zhen Han, Xintong Cheng, Zhi-Qi Dai, Qi Luo, Chong Wu, Zuxuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft Research Asia China Huya Inc Carnegie Mellon University United States
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high... 详细信息
来源: 评论
Deepfake Network Architecture Attribution
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Tianyun Huang, Ziyao Cao, Juan Li, Lei Li, Xirong Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Key Lab of Data Engineering and Knowledge Engineering Renmin University of China China
With the rapid progress of generation technology, it has become necessary to attribute the origin of fake images. Existing works on fake image attribution perform multi-class classification on several Generative Adver... 详细信息
来源: 评论
LVOS: A Benchmark for Large-scale Long-term Video Object Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Hong, Lingyi Liu, Zhongying Chen, Wenchao Tan, Chenzhi Feng, Yuang Zhou, Xinyu Guo, Pinxue Li, Jinglun Chen, Zhaoyu Gao, Shuyong Zhang, Wei Zhang, Wenqiang Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Shanghai Engineering Research Center of AI&Robotics Academy for Engineering&Technology Fudan University Shanghai China Engineering Research Center of AI&Robotics Ministry of Education Academy for Engineering&Technology Fudan University Shanghai China The Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shell VOS models, existing VOS benchmarks mainly focus on short-term video... 详细信息
来源: 评论
ChatVideo: A Tracklet-centric Multimodal and Versatile Video Understanding System
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Junke Chen, Dongdong Luo, Chong Dai, Xiyang Yuan, Lu Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Microsoft Cloud + AI Microsoft Research Asia
Existing deep video models are limited by specific tasks, fixed input-output spaces, and poor generalization capabilities, making it difficult to deploy them in real-world scenarios. In this paper, we present our visi...
来源: 评论
Learnable Irrelevant Modality Dropout for Multimodal Action Recognition on Modality-Specific Annotated Videos
arXiv
收藏 引用
arXiv 2022年
作者: Alfasly, Saghir Lu, Jian Xu, Chen Zou, Yuru Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Pazhou Lab Guangzhou China
With the assumption that a video dataset is multimodality annotated in which auditory and visual modalities both are labeled or class-relevant, current multimodal methods apply modality fusion or cross-modality attent... 详细信息
来源: 评论
DL2G: Anatomical Landmark Detection with Deep Local Features and Geometric Global Constraint
DL2G: Anatomical Landmark Detection with Deep Local Features...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Wang, Rui Yang, Wanli Xiao, Kuntao Sun, Yi Sheng, Shurong Lv, Zhao Gao, Jiahong Auhui University Auhui Hefei China Hefei Comprehensive National Science Center Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing Institute of Artificial Intelligence Hefei China Anhui Province Key Laboratory of Multimodal Cognitive Computation Auhui Hefei China Peking University Center for Mri Research Academy for Advanced Interdisciplinary Studies Beijing China Peking University Beijing City Key Lab for Medical Physics and Engineering Institute of Heavy Ion Physics School of Physics Beijing China Peking University McGovern Institute for BrainResearch Beijing China
Anatomical landmark detection, a pivotal research area in medical image processing, holds immense value in surgical navigation, image registration, and related fields. Traditional machine learning methods struggle wit... 详细信息
来源: 评论
MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion
arXiv
收藏 引用
arXiv 2024年
作者: Tu, Shuyuan Dai, Qi Zhang, Zihao Xie, Sicheng Cheng, Zhi-Qi Luo, Chong Han, Xintong Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft Research Asia China Carnegie Mellon University United States Huya Inc.
Despite impressive advancements in diffusion-based video editing models in altering video attributes, there has been limited exploration into modifying motion information while preserving the original protagonist'... 详细信息
来源: 评论