咨询与建议

限定检索结果

文献类型

  • 547 篇 会议
  • 424 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 972 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 643 篇 工学
    • 422 篇 计算机科学与技术...
    • 361 篇 软件工程
    • 138 篇 信息与通信工程
    • 75 篇 生物工程
    • 69 篇 电子科学与技术(可...
    • 67 篇 控制科学与工程
    • 65 篇 光学工程
    • 60 篇 机械工程
    • 52 篇 化学工程与技术
    • 49 篇 电气工程
    • 42 篇 生物医学工程(可授...
    • 37 篇 仪器科学与技术
    • 35 篇 材料科学与工程(可...
    • 20 篇 安全科学与工程
    • 14 篇 交通运输工程
    • 13 篇 航空宇航科学与技...
  • 344 篇 理学
    • 174 篇 数学
    • 107 篇 物理学
    • 95 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 53 篇 化学
    • 14 篇 系统科学
  • 206 篇 管理学
    • 127 篇 图书情报与档案管...
    • 88 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 36 篇 医学
    • 26 篇 临床医学
    • 16 篇 基础医学(可授医学...
  • 17 篇 法学
    • 16 篇 社会学
  • 16 篇 农学
    • 13 篇 作物学
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 3 篇 军事学

主题

  • 50 篇 semantics
  • 36 篇 training
  • 31 篇 feature extracti...
  • 21 篇 computer vision
  • 19 篇 object detection
  • 19 篇 visualization
  • 18 篇 deep learning
  • 18 篇 computational mo...
  • 16 篇 data models
  • 14 篇 data mining
  • 13 篇 deep neural netw...
  • 13 篇 image segmentati...
  • 13 篇 robustness
  • 12 篇 face recognition
  • 11 篇 convolution
  • 11 篇 optimization
  • 10 篇 reinforcement le...
  • 10 篇 neural networks
  • 10 篇 machine learning
  • 10 篇 detectors

机构

  • 114 篇 university of ch...
  • 64 篇 key lab of intel...
  • 60 篇 shanghai key lab...
  • 52 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 24 篇 school of comput...
  • 24 篇 microsoft resear...
  • 23 篇 shanghai enginee...
  • 21 篇 key laboratory o...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 19 篇 shanghai key lab...
  • 18 篇 shanghai collabo...
  • 18 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 16 篇 advanced technol...
  • 15 篇 key lab. of inte...
  • 15 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...

作者

  • 32 篇 huang qingming
  • 31 篇 zhang wenqiang
  • 30 篇 zhuge hai
  • 25 篇 jiang yu-gang
  • 24 篇 cao juan
  • 24 篇 xilin chen
  • 21 篇 wu zuxuan
  • 19 篇 liu qun
  • 18 篇 shiguang shan
  • 18 篇 xu qianqian
  • 18 篇 gao wen
  • 15 篇 sang shengbo
  • 15 篇 cao xiaochun
  • 14 篇 chen zhaoyu
  • 14 篇 yang zhiyong
  • 14 篇 yu-gang jiang
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 14 篇 sheng qiang
  • 13 篇 wang yan

语言

  • 901 篇 英文
  • 53 篇 其他
  • 25 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing and Advanced Computing Research Lab"
972 条 记 录,以下是261-270 订阅
Lightweight CNN for HRRP Recognition Based on Attention Mechanism Structured Pruning
Lightweight CNN for HRRP Recognition Based on Attention Mech...
收藏 引用
IEEE International Conference on Radar
作者: Yanhua Wang Zhilong Zhang Mingchen Yuan Jiandong Liao Liang Zhang Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing China Electromagnetic Sensing Research Center of CEMEE State Key Lab Beijing Institute of Technology Beijing China Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing China Chongqing Innovation Center Beijing Institute of Technology Chongqing China Advanced Technology Research Institute Beijing Institute of Technology Shandong China
Deep convolutional neural network (CNN) has been widely investigated for radar target high resolution range profile (HRRP) recognition. However, the deep structures of CNN require high storage and computational capabi...
来源: 评论
Delving into the Frequency: Temporally Consistent Human Motion Transfer in the Fourier Space
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Guang Liu, Wu Liu, Xinchen Gu, Xiaoyan Cao, Juan Li, Jintao Institute of Computing Technology Chinese Academy of Sciences China Jd Explore Academy Institute of Information Engineering Chinese Academy of Sciences China The Key Lab of Intelligent Information Processing of Chinese Academy of Sciences The University of Chinese Academy of Sciences China
Human motion transfer refers to synthesizing photo-realistic and temporally coherent videos that enable one person to imitate the motion of others. However, current synthetic videos suffer from the temporal inconsiste... 详细信息
来源: 评论
Hard-instance learning for quantum adiabatic prime factorization
收藏 引用
Physical Review A 2022年 第6期105卷 062455-062455页
作者: Jian Lin Zhengfeng Zhang Junping Zhang Xiaopeng Li State Key Laboratory of Surface Physics Institute of Nanoelectronics and Quantum Computing and Department of Physics Fudan University Shanghai 200433 China Shanghai Key Lab of Intelligent Information Processing and School of Computer Science Fudan University Shanghai 200433 China Shanghai Qi Zhi Institute Xuhui District Shanghai 200032 China Shanghai Research Center for Quantum Sciences Shanghai 201315 China
Prime factorization is a difficult problem with classical computing, whose exponential hardness is the foundation of Rivest-Shamir-Adleman cryptography. With programable quantum devices, adiabatic quantum computing ha... 详细信息
来源: 评论
OmniVL: one foundation model for image-language and video-language tasks  22
OmniVL: one foundation model for image-language and video-la...
收藏 引用
Proceedings of the 36th International Conference on Neural information processing Systems
作者: Junke Wang Dongdong Chen Zuxuan Wu Chong Luo Luowei Zhou Yucheng Zhao Yujia Xie Ce Liu Yu-Gang Jiang Lu Yuan Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University and Shanghai Collaborative Innovation Center on Intelligent Visual Computing Microsoft Cloud + AI Microsoft Research Asia
This paper presents OmniVL, a new foundation model to support both image-language and video-language tasks using one universal architecture. It adopts a unified transformer-based visual encoder for both image and vide...
来源: 评论
SVFormer: Semi-supervised Video Transformer for Action Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Xing, Zhen Dai, Qi Hu, Han Chen, Jingjing Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China Microsoft Research Asia China
Semi-supervised action recognition is a challenging but critical task due to the high cost of video annotations. Existing approaches mainly use convolutional neural networks, yet current revolutionary vision transform... 详细信息
来源: 评论
DISTANCE RESTRICTED TRANSFORMER ENCODER FOR MULTI-labEL CLASSIFICATION
DISTANCE RESTRICTED TRANSFORMER ENCODER FOR MULTI-LABEL CLAS...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Wang, Xiaomei Li, Yaqian Luo, Tong Guo, Yandong Fu, Yanwei Xue, Xiangyang School of Computer Science Fudan University Shanghai China OPPO Research Institute Shanghai China The School of Data Science MOE Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China
Multi-label image classification is a fundamental but challenging task in Multimedia *** aims to predict a set of labels presented in an image. Great progress has been made by exploring convolutional neural network wi... 详细信息
来源: 评论
Stable Attribute Group Editing for Reliable Few-shot Image Generation
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Guanqi Han, Xinzhe Wang, Shuhui Wu, Shuzhe Jin, Xin Tu, Dandan Huang, Qingming The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518066 China Huawei Cloud EI Innovation Lab China
Few-shot image generation aims to generate data of an unseen category based on only a few samples. Apart from basic content generation, a bunch of downstream applications hopefully benefit from this task, such as low-... 详细信息
来源: 评论
Learning Music-Dance Representations through Explicit-Implicit Rhythm Synchronization
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Jiashuo Pu, Junfu Cheng, Ying Feng, Rui Shan, Ying The School of Computer Science Shanghai Key Lab of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University Shanghai200438 China The Academy for Engineering and Technology Fudan University Shanghai200438 China The Applied Research Center PCG Tencent Shenzhen518000 China
Although audio-visual representation has been proven to be applicable in many downstream tasks, the representation of dancing videos, which is more specific and always accompanied by music with complex auditory conten... 详细信息
来源: 评论
Improving Adversarial Transferability with Neighbourhood Gradient information
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Haijing Wang, Jiafeng Chen, Zhaoyu Jiang, Kaixun Hong, Lingyi Guo, Pinxue Li, Jinglun Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai200433 China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai200433 China
Deep neural networks (DNNs) are known to be susceptible to adversarial examples, leading to significant performance degradation. In black-box attack scenarios, a considerable attack performance gap between the surroga...
来源: 评论
Evidence-Aware Multi-Modal Data Fusion and its Application to Total Knee Replacement Prediction
Evidence-Aware Multi-Modal Data Fusion and its Application t...
收藏 引用
Proceedings of the Digital Image computing: Technqiues and Applications (DICTA)
作者: Xinwen Liu Jing Wang S. Kevin Zhou Craig Engstrom Shekhar S. Chandra School of Electrical Engineering and Computer Science The University of Queensland Brisbane Australia The Commonwealth Scientific and Industrial Research Organisation Canberra Australia Center for Medical Imaging Robotics Analytic Computing & Learning (MIRACLE) School of Biomedical Engineering & Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China School of Human Movement and Nutrition Sciences The University of Queensland Brisbane Australia
Deep neural networks have been widely studied to predict a medical condition, such as total knee replacement (TKR). It has shown that data of different modalities, such as imaging data, clinical variables, and demogra... 详细信息
来源: 评论