咨询与建议

限定检索结果

文献类型

  • 532 篇 会议
  • 419 篇 期刊文献

馆藏范围

  • 951 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 633 篇 工学
    • 415 篇 计算机科学与技术...
    • 361 篇 软件工程
    • 138 篇 信息与通信工程
    • 74 篇 生物工程
    • 67 篇 电子科学与技术(可...
    • 65 篇 光学工程
    • 61 篇 机械工程
    • 61 篇 控制科学与工程
    • 52 篇 化学工程与技术
    • 50 篇 电气工程
    • 40 篇 生物医学工程(可授...
    • 36 篇 仪器科学与技术
    • 35 篇 材料科学与工程(可...
    • 19 篇 安全科学与工程
    • 14 篇 交通运输工程
    • 13 篇 航空宇航科学与技...
  • 340 篇 理学
    • 173 篇 数学
    • 106 篇 物理学
    • 94 篇 生物学
    • 57 篇 统计学(可授理学、...
    • 51 篇 化学
    • 14 篇 系统科学
  • 206 篇 管理学
    • 127 篇 图书情报与档案管...
    • 88 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 33 篇 医学
    • 23 篇 临床医学
    • 16 篇 基础医学(可授医学...
  • 17 篇 法学
    • 16 篇 社会学
  • 16 篇 农学
    • 13 篇 作物学
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 3 篇 军事学

主题

  • 50 篇 semantics
  • 35 篇 training
  • 30 篇 feature extracti...
  • 21 篇 computer vision
  • 19 篇 object detection
  • 19 篇 visualization
  • 18 篇 deep learning
  • 18 篇 computational mo...
  • 16 篇 data models
  • 14 篇 data mining
  • 13 篇 deep neural netw...
  • 13 篇 image segmentati...
  • 13 篇 robustness
  • 12 篇 face recognition
  • 11 篇 convolution
  • 11 篇 optimization
  • 10 篇 neural networks
  • 10 篇 machine learning
  • 10 篇 detectors
  • 9 篇 reinforcement le...

机构

  • 114 篇 university of ch...
  • 64 篇 key lab of intel...
  • 57 篇 shanghai key lab...
  • 51 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 23 篇 microsoft resear...
  • 21 篇 key laboratory o...
  • 21 篇 school of comput...
  • 21 篇 shanghai enginee...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 19 篇 shanghai key lab...
  • 17 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 17 篇 shanghai collabo...
  • 16 篇 advanced technol...
  • 14 篇 key lab. of inte...
  • 13 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...

作者

  • 31 篇 huang qingming
  • 30 篇 zhang wenqiang
  • 30 篇 zhuge hai
  • 24 篇 cao juan
  • 24 篇 jiang yu-gang
  • 24 篇 xilin chen
  • 21 篇 wu zuxuan
  • 19 篇 liu qun
  • 18 篇 shiguang shan
  • 18 篇 gao wen
  • 17 篇 xu qianqian
  • 15 篇 sang shengbo
  • 15 篇 cao xiaochun
  • 14 篇 chen zhaoyu
  • 14 篇 yu-gang jiang
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 14 篇 sheng qiang
  • 13 篇 yang zhiyong
  • 13 篇 qing he

语言

  • 905 篇 英文
  • 28 篇 其他
  • 22 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing and Advanced Computing Research Lab"
951 条 记 录,以下是31-40 订阅
排序:
IRSEnet: Differentially Private Image Generation with Multi-Scale Feature Extraction and Residual Channel Attention  13
IRSEnet: Differentially Private Image Generation with Multi-...
收藏 引用
13th International Conference on intelligent Control and information processing, ICICIP 2025
作者: Li, Jiahao Wang, Zhongshuai Ghazali, Kamarul Hawari Bin Yan, Suqing Lan, Rushi Sun, Xiyan Luo, Xiaonan Guangxi Key Lab. of Image and Graphic Intelligent Processing Guilin University of Electronic Technology Guilin541004 China Centre for Advanced Industrial Technology University of Malaysia Pahang Al-Sultan Abdullah Pahang Pekan26600 Malaysia Int. Joint Research Lab. of Spatio-temporal Information and Intelligent Location Services Guilin University of Electronic Technology Guilin541004 China
Privacy-preserving image generation is particularly crucial in fields like healthcare, where data are both sensitive and limited. However, effective privacy preservation often compromises the visual quality and utilit... 详细信息
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation  38
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmenta...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan...
来源: 评论
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutual information  48
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutua...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal processing, ICASSP 2023
作者: Li, Jicun Li, Xingjian Wang, Tianyang Wang, Shi Cao, Yanan Xu, Chengzhong Dou, Dejing Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Big Data Lab Baidu Research China University of Alabama Birmingham United States Institute of Information Engineering Chinese Academy of Sciences China State Key Lab of Iotsc University of Macau China
Fine-tuning pre-trained language models, such as BERT, has shown enormous success among various NLP tasks. Though simple and effective, the process of fine-tuning has been found unstable, which often leads to unexpect... 详细信息
来源: 评论
A Flexible Knowledge Graph Error Detection Framework Combined with Semantic information  12th
A Flexible Knowledge Graph Error Detection Framework Combine...
收藏 引用
12th CCF Conference on BigData, BigData 2024
作者: Zhao, Yangwu Liu, Yang Ao, Xiang He, Qing Henan Institute of Advanced Technology Zhengzhou University Zhengzhou China Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China
Knowledge graphs (KGs) are extensively utilized in numerous applications, including question-answering systems and recommender systems. However, knowledge graphs are often constructed through web crawling or crowdsour... 详细信息
来源: 评论
DMSS:An Attention-Based Deep Learning Model for High-Quality Mass Spectrometry Prediction
收藏 引用
Big Data Mining and Analytics 2024年 第3期7卷 577-589页
作者: Yihui Ren Yu Wang Wenkai Han Yikang Huang Xiaoyang Hou Chunming Zhang Dongbo Bu Xin Gao Shiwei Sun Key Lab of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190Chinaand with University of Chinese Academy of SciencesBeijing 100049China Syneron Technology Guangzhou 510000China College of Information and Electrical Engineering China Agricultural UniversityBeijing 100083China Computer Science Program ComputerElectrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and Technology(KAUST)Thuwal 23955-6900Kingdom of Saudi Arabia Insitute of Computing Technology Chinese Academy of SciencesBeijing 100190China with Western Institute of Computing Technology Chongqing 400000China
Accurate prediction of peptide spectra is crucial for improving the efficiency and reliability of proteomic analysis,as well as for gaining insight into various biological *** this study,we introduce Deep MS Simulator... 详细信息
来源: 评论
Nested relation extraction with iterative neural network
收藏 引用
Frontiers of Computer Science 2021年 第3期15卷 109-122页
作者: Yixuan CAO Dian CHEN Zhengqi XU Hongwei LI Ping LUO Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China
Most existing researches on relation extraction focus on binary flat relations like Bomln relation between a Person and a *** a large portion of objective facts de-scribed in natural language are complex,especially in... 详细信息
来源: 评论
AlphaFold2 and its applications in the fields of biology and medicine
收藏 引用
Signal Transduction and Targeted Therapy 2023年 第4期8卷 1630-1643页
作者: Zhenyu Yang Xiaoxi Zeng Yi Zhao Runsheng Chen West China Biomedical Big Data Center West China HospitalSichuan UniversityChengdu 610041China Key Laboratory of Intelligent Information Processing Advanced Computer Research CenterInstitute of Computing TechnologyChinese Academy of SciencesBeijing 100190China Key Laboratory of RNA Biology Center for Big Data Research in HealthInstitute of BiophysicsChinese Academy of SciencesBeijing 100101China Pingshan Translational Medicine Center Shenzhen Bay LaboratoryShenzhen 518118China
AlphaFold2(AF2)is an artificial intelligence(AI)system developed by DeepMind that can predict three-dimensional(3D)structures of proteins from amino acid sequences with atomic-level *** structure prediction is one of ... 详细信息
来源: 评论
ETS: An Error Tolerable System for Coreference Resolution  15
ETS: An Error Tolerable System for Coreference Resolution
收藏 引用
15th Conference on Computational Natural Language Learning, CoNLL 2011
作者: Xiong, Hao Song, Linfeng Meng, Fandong Liu, Yang Liu, Qun Lü, Yajuan Key Lab. of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences P.O. Box 2704 Beijing100190 China
This paper presents our error tolerable system for coreference resolution in CoNLL-2011(Pradhan et al., 2011) shared task (closed track). Different from most previous reported work, we detect mention candidates based ... 详细信息
来源: 评论
Tunable dipole–dipole interactions between nanoparticles levitated by two orthogonally polarized optical traps
收藏 引用
Photonics research 2024年 第10期12卷 2139-2147页
作者: TONG LI MIAN WU PEITONG HE NAN LI ZHIMING CHEN ZHENHAI FU XIAOWEN GAO HUIZHU HU Research Center for Advanced Computational Sensing and Intelligent Processing Zhejiang LabHangzhou 310000China State Key Laboratory of Extreme Photonics and Instrumentation College of Optical Science and EngineeringZhejiang UniversityHangzhou 310027China Research Center for Frontier Fundamental Studies Zhejiang LabHangzhou 310000China
Arrays of optically levitated nanoparticles with fully tunable light-induced dipole–dipole interactions have emerged as a platform for fundamental research and sensing ***,previous experiments utilized two optical tr... 详细信息
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availability of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论