咨询与建议

限定检索结果

文献类型

  • 547 篇 会议
  • 424 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 972 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 643 篇 工学
    • 422 篇 计算机科学与技术...
    • 361 篇 软件工程
    • 138 篇 信息与通信工程
    • 75 篇 生物工程
    • 69 篇 电子科学与技术(可...
    • 67 篇 控制科学与工程
    • 65 篇 光学工程
    • 60 篇 机械工程
    • 52 篇 化学工程与技术
    • 49 篇 电气工程
    • 42 篇 生物医学工程(可授...
    • 37 篇 仪器科学与技术
    • 35 篇 材料科学与工程(可...
    • 20 篇 安全科学与工程
    • 14 篇 交通运输工程
    • 13 篇 航空宇航科学与技...
  • 344 篇 理学
    • 174 篇 数学
    • 107 篇 物理学
    • 95 篇 生物学
    • 58 篇 统计学(可授理学、...
    • 53 篇 化学
    • 14 篇 系统科学
  • 206 篇 管理学
    • 127 篇 图书情报与档案管...
    • 88 篇 管理科学与工程(可...
    • 28 篇 工商管理
  • 36 篇 医学
    • 26 篇 临床医学
    • 16 篇 基础医学(可授医学...
  • 17 篇 法学
    • 16 篇 社会学
  • 16 篇 农学
    • 13 篇 作物学
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 文学
  • 3 篇 军事学

主题

  • 50 篇 semantics
  • 36 篇 training
  • 31 篇 feature extracti...
  • 21 篇 computer vision
  • 19 篇 object detection
  • 19 篇 visualization
  • 18 篇 deep learning
  • 18 篇 computational mo...
  • 16 篇 data models
  • 14 篇 data mining
  • 13 篇 deep neural netw...
  • 13 篇 image segmentati...
  • 13 篇 robustness
  • 12 篇 face recognition
  • 11 篇 convolution
  • 11 篇 optimization
  • 10 篇 reinforcement le...
  • 10 篇 neural networks
  • 10 篇 machine learning
  • 10 篇 detectors

机构

  • 114 篇 university of ch...
  • 64 篇 key lab of intel...
  • 60 篇 shanghai key lab...
  • 52 篇 key lab of intel...
  • 30 篇 key lab. of inte...
  • 24 篇 school of comput...
  • 24 篇 microsoft resear...
  • 23 篇 shanghai enginee...
  • 21 篇 key laboratory o...
  • 20 篇 peng cheng labor...
  • 19 篇 key lab. of inte...
  • 19 篇 shanghai key lab...
  • 18 篇 shanghai collabo...
  • 18 篇 shanghai collabo...
  • 17 篇 key lab of intel...
  • 16 篇 advanced technol...
  • 15 篇 key lab. of inte...
  • 15 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 12 篇 institute of dig...

作者

  • 32 篇 huang qingming
  • 31 篇 zhang wenqiang
  • 30 篇 zhuge hai
  • 25 篇 jiang yu-gang
  • 24 篇 cao juan
  • 24 篇 xilin chen
  • 21 篇 wu zuxuan
  • 19 篇 liu qun
  • 18 篇 shiguang shan
  • 18 篇 xu qianqian
  • 18 篇 gao wen
  • 15 篇 sang shengbo
  • 15 篇 cao xiaochun
  • 14 篇 chen zhaoyu
  • 14 篇 yang zhiyong
  • 14 篇 yu-gang jiang
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 14 篇 sheng qiang
  • 13 篇 wang yan

语言

  • 901 篇 英文
  • 53 篇 其他
  • 25 篇 中文
检索条件"机构=Key Lab of Intelligent Information Processing and Advanced Computing Research Lab"
972 条 记 录,以下是621-630 订阅
Recommendation system based on trusted relation transmission
Recommendation system based on trusted relation transmission
收藏 引用
International Conference on intelligent System and Knowledge Engineering, ISKE
作者: Yixiong Bian Huakang Li Jiangsu Key Lab of Big Data and Security and Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China State Key Laboratory of Mathematical Engineering and Advanced Computing Wuxi China
With the rapid development of the internet, applications of recommendation systems for online shops and entertainment platforms become more and more popular. In order to improve the effectiveness of recommendation, ex... 详细信息
来源: 评论
Predicting protein inter-residue contacts using composite likelihood maximization and deep learning
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Haicang Zhang, Qi Ju, Fusong Zhu, Jianwei Sun, Shiwei Gao, Yujuan Xie, Ziwei Deng, Minghua Sun, Shiwei Zheng, Wei-Mou Bu, Dongbo Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Center for Quantitative Biology School of Mathematical Sciences Center for Statistical Sciences Peking University Beijing China Institute of Theoretical Physics Chinese Academy of Sciences Beijing China College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
Accurate prediction of inter-residue contacts of a protein is important to calculating its tertiary structure. Analysis of co-evolutionary events among residues has been proved effective to inferring inter-residue con... 详细信息
来源: 评论
Quantitative composite decision-theoretic rough set
Quantitative composite decision-theoretic rough set
收藏 引用
International Conference on intelligent System and Knowledge Engineering, ISKE
作者: Linna Wang Ling Liu Xin Yang Pan Zhuo School of Electronic and Information Engineering Sichuan Technology and Business University Chengdu China Key Lab of Cloud Computing and Intelligent Information Processing Sichuan Technology and Business University Chengdu China
In practical decision-making, we prefer to characterize the uncertain problems with the hybrid data, which consists of various types of data, e.g., categorical, numerical, set-valued and interval-valued. The extended ... 详细信息
来源: 评论
Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System
收藏 引用
IOP Conference Series: Materials Science and Engineering 2018年 第7期322卷
作者: Hui Zhi Mengmeng He Feiyue Wang Ziju Huang Key Lab of Computing Intelligent and Signal Processing (Ministry of Education) Anhui University Hefei China College of Electronics and Information Engineering Anhui University Hefei China
A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay...
来源: 评论
Arbitrary-Oriented Scene Text Detection via Rotation Proposals
arXiv
收藏 引用
arXiv 2017年
作者: Ma, Jianqi Shao, Weiyuan Ye, Hao Wang, Li Wang, Hong Zheng, Yingbin Xue, Xiangyang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai201210 China
—This paper introduces a novel rotation-based framework for arbitrary-oriented text detection in natural scene images. We present the Rotation Region Proposal Networks (RRPN), which are designed to generate inclined ... 详细信息
来源: 评论
From social to individuals: A parsimonious path of multi-level models for crowdsourced preference aggregation
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Qianqian Xiong, Jiechao Cao, Xiaochun Huang, Qingming Yao, Yuan Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing1000190 China Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China Tencent AI Lab Shenzhen518057 BICMR-LMAM-LMEQF-LMP School of Mathematical Sciences Peking University Beijing100871 China University of Chinese Academy of Sciences Institute of Computing Technology of Chinese Academy of Sciences Beijing100190 China Department of Mathematics and by courtesy Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong Hong Kong
In crowdsourced preference aggregation, it is often assumed that all the annotators are subject to a common preference or social utility function which generates their comparison behaviors in experiments. However, in ... 详细信息
来源: 评论
Evaluation of the occurrence probability of a railway accident with parametric uncertainties and failure dependencies using binary decision diagram  27th
Evaluation of the occurrence probability of a railway accide...
收藏 引用
27th European Safety and Reliability Conference, ESREL 2017
作者: Qiu, S. Zheng, Y. Ming, X.G. Hou, Y. Sallak, M. School of Mechanical Engineering Institute of Intelligent Manufacturing and Information Engineering Shanghai Jiao Tong University Shanghai China Shanghai Key Lab of Advanced Manufacturing Environment China Heudiasyc Laboratory Research Center of Royallieu Sorbonnes Universités Université de Technologie de Compiègne France
An important issue in reliability and risk analysis is to evaluate the occurrence probability of accidents. Due to the insufficiency of data, some reliability parameters of components are imprecise and represented by ... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Improving interpretability of deep neural networks with semantic information
arXiv
收藏 引用
arXiv 2017年
作者: Dong, Yinpeng Su, Hang Zhu, Jun Zhang, Bo Tsinghua National Lab for Information Science and Technology State Key Lab of Intelligent Technology and Systems Center for Bio-Inspired Computing Research Department of Computer Science and Technology Tsinghua University
Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the futur... 详细信息
来源: 评论
Towards interpretable deep neural networks by leveraging adversarial examples
arXiv
收藏 引用
arXiv 2017年
作者: Dong, Yinpeng Su, Hang Zhu, Jun Bao, Fan Tsinghua National Lab for Information Science and Technology State Key Lab of Intelligent Technology and Systems Center for Bio-Inspired Computing Research Department of Computer Science and Technology Tsinghua University
Deep neural networks (DNNs) have demonstrated impressive performance on a wide array of tasks, but they are usually considered opaque since internal structure and learned parameters are not interpretable. In this pape... 详细信息
来源: 评论