咨询与建议

限定检索结果

文献类型

  • 34 篇 会议
  • 22 篇 期刊文献

馆藏范围

  • 56 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 20 篇 计算机科学与技术...
    • 18 篇 软件工程
    • 8 篇 控制科学与工程
    • 6 篇 光学工程
    • 6 篇 电气工程
    • 6 篇 生物工程
    • 4 篇 机械工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 信息与通信工程
    • 4 篇 化学工程与技术
    • 2 篇 动力工程及工程热...
    • 2 篇 土木工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 8 篇 物理学
    • 5 篇 生物学
    • 5 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 12 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 computer vision
  • 2 篇 deep neural netw...
  • 2 篇 image segmentati...
  • 2 篇 cameras
  • 2 篇 manufacturing co...
  • 2 篇 visualization
  • 2 篇 control systems
  • 2 篇 competition
  • 2 篇 benchmarking
  • 2 篇 stochastic syste...
  • 2 篇 directed graphs
  • 2 篇 sdn
  • 2 篇 nonlinear system...
  • 2 篇 nonlinear contro...
  • 2 篇 ubiquitous compu...
  • 2 篇 adaptive control
  • 2 篇 programmable con...
  • 1 篇 wind power

机构

  • 9 篇 key laboratory o...
  • 7 篇 guangxi key labo...
  • 6 篇 guangxi key lab ...
  • 5 篇 guangxi key labo...
  • 4 篇 key laboratory o...
  • 4 篇 intelligent robo...
  • 4 篇 engineering rese...
  • 4 篇 cvir lab changch...
  • 4 篇 shanghai aerospa...
  • 3 篇 school of artifi...
  • 3 篇 school of electr...
  • 3 篇 department of au...
  • 3 篇 college of compu...
  • 3 篇 cyberspace insti...
  • 2 篇 guangdong provin...
  • 2 篇 pku-sensetime ma...
  • 2 篇 guangxi colleges...
  • 2 篇 wuzhou universit...
  • 2 篇 key lab of machi...
  • 2 篇 key laboratory o...

作者

  • 6 篇 mo zhiyi
  • 6 篇 zhong bineng
  • 5 篇 jun wang
  • 5 篇 tai deyi
  • 5 篇 liang qihua
  • 5 篇 song shuxiang
  • 5 篇 xu fuyuan
  • 4 篇 xueming xiao
  • 4 篇 bo zheng
  • 4 篇 meibao yao
  • 3 篇 yu kang
  • 3 篇 liu wei
  • 3 篇 zhang shengping
  • 3 篇 xie jinxia
  • 3 篇 li ning
  • 3 篇 wang jun
  • 3 篇 hu wei
  • 2 篇 liang guoyuan
  • 2 篇 li kenli
  • 2 篇 wu xinyu

语言

  • 53 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Key Lab of Machine Vision and Intelligence Control Technology"
56 条 记 录,以下是31-40 订阅
SoccerNet 2023 Challenges Results
arXiv
收藏 引用
arXiv 2023年
作者: Cioppa, Anthony Giancola, Silvio Somers, Vladimir Magera, Floriane Zhou, Xin Mkhallati, Hassan Deliège, Adrien Held, Jan Hinojosa, Carlos Mansourian, Amir M. Miralles, Pierre Barnich, Olivier De Vleeschouwer, Christophe Alahi, Alexandre Ghanem, Bernard Van Droogenbroeck, Marc Kamal, Abdullah Maglo, Adrien Clapés, Albert Abdelaziz, Amr Xarles, Artur Orcesi, Astrid Scott, Atom Liu, Bin Lim, Byoungkwon Chen, Chen Deuser, Fabian Yan, Feng Yu, Fufu Shitrit, Gal Wang, Guanshuo Choi, Gyusik Kim, Hankyul Guo, Hao Fahrudin, Hasby Koguchi, Hidenari Ardö, Håkan Salah, Ibrahim Yerushalmy, Ido Muhammad, Iftikar Uchida, Ikuma Be'ery, Ishay Rabarisoa, Jaonary Lee, Jeongae Fu, Jiajun Yin, Jianqin Xu, Jinghang Nang, Jongho Denize, Julien Li, Junjie Zhang, Junpei Kim, Juntae Synowiec, Kamil Kobayashi, Kenji Zhang, Kexin Habel, Konrad Nakajima, Kota Jiao, Licheng Ma, Lin Wang, Lizhi Wang, Luping Li, Menglong Zhou, Mengying Nasr, Mohamed Abdelwahed, Mohamed Liashuha, Mykola Falaleev, Nikolay Oswald, Norbert Jia, Qiong Pham, Quoc-Cuong Song, Ran Hérault, Romain Peng, Rui Chen, Ruilong Liu, Ruixuan Baikulov, Ruslan Fukushima, Ryuto Escalera, Sergio Lee, Seungcheon Chen, Shimin Ding, Shouhong Someya, Taiga Moeslund, Thomas B. Li, Tianjiao Shen, Wei Zhang, Wei Li, Wei Dai, Wei Luo, Weixin Zhao, Wending Zhang, Wenjie Yang, Xinquan Ma, Yanbiao Joo, Yeeun Zeng, Yingsen Gan, Yiyang Zhu, Yongqiang Zhong, Yujie Ruan, Zheng Li, Zhiheng Huang, Zhijian Meng, Ziyu Belgium Saudi Arabia Sportradar Norway UCLouvain Belgium EPFL Switzerland EVS Broadcast Equipment Belgium Baidu Research United States Belgium Sharif University of Technology Iran Footovision France Zewail City of Science Technology and Innovation Egypt Université Paris-Saclay CEA France Universitat de Barcelona Spain Computer Vision Center Spain Nagoya University Japan Research Center for Applied Mathematics and Machine Intelligence Zhejiang Lab China AIBrain United States OPPO Research Institute China Germany Meituan China Tencent Youtu Lab China Amazon Prime Video Sport United States Sogang University Korea Republic of The University of Tokyo Japan Spiideo Sweden University of Tsukuba Japan School of Artificial Intelligence Beijing University of Posts and Telecommunications China Normandie Univ INSA Rouen LITIS France Shanghai Jiao Tong University China Key Laboratory of Intelligent Perception and Image Understanding The Ministry of Education Xidian University China NASK - National Research Institute Poland Robo Space China Tongji University China Sportlight Technology United Kingdom School of Control Science and Engineering Shandong University China lRomul Russia Aalborg University Denmark Turing AI Cultures GmbH Germany Information Systems Technology and Design Singapore University of Technology and Design Singapore Sun Yat-sen University China
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three mai... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
Local supports global: Deep camera relocalization with sequence enhancement
arXiv
收藏 引用
arXiv 2019年
作者: Xue, Fei Wang, Xin Yan, Zike Wang, Qiuyuan Wang, Junqiu Zha, Hongbin UISEE Technology Inc. Key Laboratory of Machine Perception Peking University PKU-SenseTime Machine Vision Joint Lab Peking University Beijing Changcheng Aviation Measurement and Control Institute
We propose to leverage the local information in image sequences to support global camera relocalization. In contrast to previous methods that regress global poses from single images, we exploit the spatial-temporal co... 详细信息
来源: 评论
Local Supports Global: Deep Camera Relocalization With Sequence Enhancement
Local Supports Global: Deep Camera Relocalization With Seque...
收藏 引用
International Conference on Computer vision (ICCV)
作者: Fei Xue Xin Wang Zike Yan Qiuyuan Wang Junqiu Wang Hongbin Zha UISEE Technology Inc. Key Laboratory of Machine Perception Peking University PKU-SenseTime Machine Vision Joint Lab Peking University AVIC Beijing Changcheng Aviation Measurement and Control Institute
We propose to leverage the local information in a image sequence to support global camera relocalization. In contrast to previous methods that regress global poses from single images, we exploit the spatial-temporal c... 详细信息
来源: 评论
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yawei Zhang, Kai Timofte, Radu Van Gool, Luc Kong, Fangyuan Li, Mingxi Liu, Songwei Du, Zongcai Liu, Ding Zhou, Chenhui Chen, Jingyi Han, Qingrui Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Qiao, Yu Dong, Chao Sun, Long Pan, Jinshan Zhu, Yi Zong, Zhikai Liu, Xiaoxiao Hui, Zheng Yang, Tao Ren, Peiran Xie, Xuansong Hua, Xian-Sheng Wang, Yanbo Ji, Xiaozhong Lin, Chuming Luo, Donghao Tai, Ying Wang, Chengjie Zhang, Zhizhong Xie, Yuan Cheng, Shen Luo, Ziwei Yu, Lei Wen, Zhihong Wu, Qi Li, Youwei Fan, Haoqiang Sun, Jian Liu, Shuaicheng Huang, Yuanfei Jin, Meiguang Huang, Hua Liu, Jing Zhang, Xinjian Wang, Yan Long, Lingshun Li, Gen Zhang, Yuanfan Cao, Zuowei Sun, Lei Alexander, Panaetov Wang, Yucong Cai, Minjie Wang, Li Tian, Lu Wang, Zheyuan Ma, Hongbing Liu, Jie Chen, Chao Cai, Yidong Tang, Jie Wu, Gangshan Wang, Weiran Huang, Shirui Lu, Honglei Liu, Huan Wang, keyan Chen, Jun Chen, Shi Miao, Yuchun Huang, Zimo Zhang, Lefei Ayazoglu, Mustafa Xiong, Wei Xiong, Chengyi Wang, Fei Li, Hao Wen, Ruimian Yang, Zhijing Zou, Wenbin Zheng, Weixin Ye, Tian Zhang, Yuncheng Kong, Xiangzhen Arora, Aditya Zamir, Syed Waqas Khan, Salman Hayat, Munawar Khan, Fahad Shahbaz Gao, Dandan Zhou, Dengwen Ning, Qian Tang, Jingzhu Huang, Han Wang, Yufei Peng, Zhangheng Li, Haobo Guan, Wenxue Gong, Shenghua Li, Xin Liu, Jun Wang, Wanjun Zeng, Kun Lin, Hanjiang Chen, Xinyu Fang, Jinsheng Zhang, Shuhao Zhang, Yuhao Sinha, Abhishek Kumar Moorthi, S. Manthira Dhar, Debajyoti Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Tan, Wei Chen, Hao Xu, Qian Narang, Pratik Singh, Usneek Sameen, Syed Khaitan, Harsh Yinghua, Liu Tianlin, Zhang Xiaoming, Zhang Meng, Dingxuan Tian, Chunwei Morshed, Mashrur M. Ahsan, Ahmad Omar Computer Vision Lab ETH Zurich Switzerland University of Würzburg Germany ByteDance Shenzhen China State Key Laboratory for Novel Software Technology Nanjing University China ByteDance Inc China NetEase Inc. China Shenzhen Institutes of Advanced Technology CAS China University of Macau China Shanghai AI Lab Shanghai China Nanjing University of Science and Technology China Amazon Web Services United States China Alibaba DAMO Academy EFC Yuhang District Zhejiang Hangzhou China East China Normal University China Youtu Lab Tencent China Megvii Technology China University of Electronic Science and Technology of China China School of Artificial Intelligence Beijing Normal University China Alibaba Group China Bilibili AI China Nankai-Baidu Joint Lab Nankai University Tianjin China Platform Technologies Tencent Online Video China Higher School of Economics Russia Huawei Moscow Research Center Russia Hunan University China Xidian University China Xilinx Technology Beijing Limited China College of Information Science and Engineering Xinjiang University Urumqi China Department of Electronic Engineering Tsinghua University Beijing China Nanjing University China McMaster University Canada School of Telecommunication Engineering Xidian University Xi’an China School of Computer Science Wuhan University Wuhan China School of Mathematical Science University of Electronic Science and Technology of China Chengdu China School of Computer Science The University of Sydney Sydney Australia Aselsan Research Ankara Turkey School of Electronic and Information Engineering South-Central University for Nationalities Wuhan China Guangdong University of Technology China Fujian Normal University Fuzhou University Jimei University China Design Group China Abu Dhabi United Arab Emirates Monash University Melbourne Australia Mohamed bin Zayed University of AI United Arab Emirates North China Electric Power University Changping District Beijing China The School of Art
This paper reviews the NTIRE 2022 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The task of the challenge was to super-resolve an input image with a magnificati... 详细信息
来源: 评论
Deep Multi-Model Fusion for Single-Image Dehazing
Deep Multi-Model Fusion for Single-Image Dehazing
收藏 引用
International Conference on Computer vision (ICCV)
作者: Zijun Deng Lei Zhu Xiaowei Hu Chi-Wing Fu Xuemiao Xu Qing Zhang Jing Qin Pheng-Ann Heng South China University of Technology Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology CAS The Chinese University of Hong Kong State Key Laboratory of Subtropical Building Science Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Sun Yat-sen University The Hong Kong Polytechnic University CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology CAS
This paper presents a deep multi-model fusion network to attentively integrate multiple models to separate layers and boost the performance in single-image dehazing. To do so, we first formulate the attentional featur... 详细信息
来源: 评论
Multiple feature sample classification via joint sparse representation
收藏 引用
Journal of Computational Information Systems 2015年 第14期11卷 5125-5133页
作者: Zha, Changjun Xu, Tailong Key Laboratory of Machine Vision and Intelligence Control Technology Hefei University Hefei China
Based on the characteristics of wireless monitoring networks and profiling sensors, we present a method of acquiring the profile of moving objects. First, principal component analysis is used to extract profile sample... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Service–oriented supply and demand network of enterprises
收藏 引用
Journal of Chemical and Pharmaceutical Research 2014年 第6期6卷 1488-1495页
作者: Tai, Deyi Xu, Fuyuan Hu, Wei School of Management University of Shanghai for Science and Technology China Key Laboratory of Machine Vision and Intelligence Control Technology Hefei University China
To realize dynamic, open and multi supply-demand cooperation of Supply and Demand Network of Enterprises with Multifunction and Opening Characteristics (SDN), both the operational mode and implemented information plat... 详细信息
来源: 评论
Relations' evolutionary in Supply and Demand Network of Enterprises with Multi-function and Opening Characteristics
收藏 引用
Biotechnology: An Indian Journal 2014年 第12期10卷 6268-6279页
作者: Tai, Deyi Xu, Fuyuan Hu, Wei University of Shanghai for Science and Technology School of Management China Key Laboratory of Machine Vision and Intelligence Control Technology Hefei University China
There are three relations exist in Supply and Demand Network of Enterprises with Multifunction and Opening Characteristics (SDN) that are competition, cooperation and neutrality relations, which's evolutionary wil... 详细信息
来源: 评论