咨询与建议

限定检索结果

文献类型

  • 97 篇 期刊文献
  • 50 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 92 篇 工学
    • 54 篇 计算机科学与技术...
    • 51 篇 软件工程
    • 36 篇 生物医学工程(可授...
    • 34 篇 生物工程
    • 22 篇 光学工程
    • 18 篇 仪器科学与技术
    • 17 篇 信息与通信工程
    • 14 篇 机械工程
    • 10 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 8 篇 控制科学与工程
    • 7 篇 化学工程与技术
    • 3 篇 冶金工程
    • 3 篇 土木工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
  • 60 篇 理学
    • 34 篇 生物学
    • 24 篇 数学
    • 17 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 7 篇 化学
    • 3 篇 系统科学
  • 41 篇 医学
    • 36 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 16 篇 管理学
    • 12 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 5 篇 教育学
    • 5 篇 教育学
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 7 篇 ultrasonic imagi...
  • 7 篇 deep learning
  • 7 篇 magnetic resonan...
  • 6 篇 semantic segment...
  • 5 篇 image segmentati...
  • 4 篇 imaging
  • 4 篇 three-dimensiona...
  • 4 篇 semantics
  • 4 篇 electrocardiogra...
  • 3 篇 image fusion
  • 3 篇 phantoms
  • 3 篇 feature extracti...
  • 3 篇 natural language...
  • 3 篇 image classifica...
  • 3 篇 training
  • 3 篇 image resolution
  • 2 篇 endoscopy
  • 2 篇 noise reduction
  • 2 篇 ultrasonic backs...
  • 2 篇 distillation

机构

  • 30 篇 shanghai key lab...
  • 25 篇 digital medical ...
  • 24 篇 digital medical ...
  • 24 篇 key laboratory o...
  • 20 篇 department of el...
  • 20 篇 shanghai key lab...
  • 10 篇 academy for engi...
  • 8 篇 shanghai key lab...
  • 7 篇 the key laborato...
  • 6 篇 academy for engi...
  • 4 篇 digital medical ...
  • 4 篇 the shanghai key...
  • 4 篇 shandong compute...
  • 4 篇 key laboratory o...
  • 3 篇 department of el...
  • 3 篇 department of ne...
  • 3 篇 the department o...
  • 3 篇 shanghai key lab...
  • 3 篇 the digital medi...
  • 2 篇 school of mathem...

作者

  • 33 篇 song zhijian
  • 32 篇 wang manning
  • 22 篇 qu linhao
  • 17 篇 liu shaolei
  • 15 篇 fu kexue
  • 15 篇 yuanyuan wang
  • 11 篇 wang yuanyuan
  • 10 篇 manning wang
  • 10 篇 luo xiaoyuan
  • 9 篇 wang shuo
  • 9 篇 yang zhiwei
  • 8 篇 yi guo
  • 8 篇 yang cuiwei
  • 8 篇 jinhua yu
  • 7 篇 li shiman
  • 7 篇 meng yucong
  • 6 篇 kexue fu
  • 6 篇 shi yonghong
  • 6 篇 chen xinrong
  • 6 篇 zhijian song

语言

  • 133 篇 英文
  • 8 篇 其他
  • 6 篇 中文
检索条件"机构=Key Lab of Medical Imaging Computing and Computer Assisted Intervention of Shanghai"
147 条 记 录,以下是61-70 订阅
排序:
DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Luo, Xiaoyuan Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Fudan University Shanghai200032 China
Multiple Instance Learning (MIL) is widely used in analyzing histopathological Whole Slide Images (WSIs). However, existing MIL methods do not explicitly model the data distribution, and instead they only learn a bag-... 详细信息
来源: 评论
TransFuse: A Unified Transformer-based Image Fusion Framework using Self-supervised Learning
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
Image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论
Robust point cloud registration framework based on deep graph matching
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Kexue Liu, Shaolei Luo, Xiaoyuan Wang, Manning Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
3D point cloud registration is a fundamental problem in computer vision and robotics. There has been extensive research in this area, but existing methods meet great challenges in situations with a large proportion of... 详细信息
来源: 评论
Towards label-efficient Automatic Diagnosis and Analysis: A Comprehensive Survey of Advanced Deep Learning-based Weakly-supervised, Semi-supervised and Self-supervised Techniques in Histopathological Image Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Qu, Linhao Liu, Siyu Liu, Xiaoyu Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Shanghai200032 China
Histopathological images contain abundant phenotypic information and pathological patterns, which are the gold standards for disease diagnosis and essential for the prediction of patient prognosis and treatment outcom... 详细信息
来源: 评论
Segmentation of arteriovenous malformations nidus and vessel in digital subtraction angiography images based on an iterative thresholding method
Segmentation of arteriovenous malformations nidus and vessel...
收藏 引用
International Conference on Biomedical Engineering and Informatics (BMEI)
作者: Yuxi Lian Yuanyuan Wang Jinhua Yu Yi Guo Liang Chen Department of Electronic Engineering Fudan University Shanghai China Key laboratory of Medical Imaging Computing and-Computer Assisted Intervention of Shanghai China Department of Neurosurgery Fudan University Shanghai China
Digital subtraction angiography (DSA) plays an important role in the diagnosis and therapy of vascular diseases. Segmentation of nidus and vessel in DSA images is an essential step in the diagnosis of arteriovenous ma... 详细信息
来源: 评论
Transfuse: A Unified Transformer-Based Image Fusion Framework Using Self-Supervised Learning
SSRN
收藏 引用
SSRN 2022年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Li, Shiman Yin, Siqi Qiao, Qin Song, Zhijian Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China
Image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image. Due to insufficient task-specific training data and correspond... 详细信息
来源: 评论
Fusionmlp: A Mlp-Based Unified Image Fusion Framework
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Shaolei Qu, Linhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Due to the powerful feature representation capacity, deep learning-based image fusion methods have improved the fusion results for better information integration. However, some inherent limitations in convolutional ne... 详细信息
来源: 评论
Fusionmlp: A Mlp-Based Unified Image Fusion Framework
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Shaolei Li, Shiman Qu, Linhao Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
Due to the powerful feature representation capacity, deep learning-based image fusion methods have improved the fusion results for better information integration. However, some inherent limitations in convolutional ne... 详细信息
来源: 评论
The Rise of AI Language Pathologists: Exploring Two-level Prompt Learning for Few-shot Weakly-supervised Whole Slide Image Classification
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Linhao Luo, Xiaoyuan Fu, Kexue Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
This paper introduces the novel concept of few-shot weakly supervised learning for pathology Whole Slide Image (WSI) classification, denoted as FSWC. A solution is proposed based on prompt learning and the utilization... 详细信息
来源: 评论
TransMEF: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning
arXiv
收藏 引用
arXiv 2021年
作者: Qu, Linhao Liu, Shaolei Wang, Manning Song, Zhijian Digital Medical Research Center School of Basic Medical Science Fudan University Shanghai200032 China Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention China
In this paper, we propose TransMEF, a transformer-based multi-exposure image fusion framework that uses self-supervised multi-task learning. The framework is based on an encoder-decoder network, which can be trained o... 详细信息
来源: 评论