咨询与建议

限定检索结果

文献类型

  • 1,521 篇 期刊文献
  • 1,337 篇 会议
  • 1 册 图书

馆藏范围

  • 2,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,928 篇 工学
    • 1,343 篇 计算机科学与技术...
    • 1,127 篇 软件工程
    • 450 篇 信息与通信工程
    • 219 篇 生物工程
    • 203 篇 控制科学与工程
    • 201 篇 电气工程
    • 170 篇 电子科学与技术(可...
    • 132 篇 光学工程
    • 104 篇 生物医学工程(可授...
    • 102 篇 机械工程
    • 101 篇 化学工程与技术
    • 78 篇 网络空间安全
    • 76 篇 仪器科学与技术
    • 54 篇 交通运输工程
    • 53 篇 安全科学与工程
    • 52 篇 动力工程及工程热...
    • 48 篇 材料科学与工程(可...
    • 45 篇 土木工程
  • 1,013 篇 理学
    • 496 篇 数学
    • 273 篇 物理学
    • 253 篇 生物学
    • 172 篇 统计学(可授理学、...
    • 91 篇 化学
    • 75 篇 系统科学
  • 512 篇 管理学
    • 276 篇 图书情报与档案管...
    • 247 篇 管理科学与工程(可...
    • 93 篇 工商管理
  • 101 篇 医学
    • 83 篇 临床医学
    • 59 篇 基础医学(可授医学...
  • 87 篇 法学
    • 64 篇 社会学
  • 43 篇 经济学
  • 33 篇 农学
  • 17 篇 教育学
  • 15 篇 军事学
  • 10 篇 文学
  • 3 篇 艺术学

主题

  • 113 篇 semantics
  • 80 篇 feature extracti...
  • 69 篇 deep learning
  • 66 篇 training
  • 64 篇 accuracy
  • 50 篇 federated learni...
  • 47 篇 computational mo...
  • 39 篇 machine learning
  • 36 篇 data mining
  • 35 篇 graph neural net...
  • 34 篇 image segmentati...
  • 34 篇 privacy
  • 33 篇 object detection
  • 32 篇 optimization
  • 30 篇 data models
  • 30 篇 adaptation model...
  • 27 篇 reinforcement le...
  • 27 篇 neural networks
  • 27 篇 forecasting
  • 26 篇 generative adver...

机构

  • 170 篇 university of ch...
  • 81 篇 cas key lab of n...
  • 73 篇 key laboratory o...
  • 71 篇 shandong provinc...
  • 62 篇 cas key laborato...
  • 52 篇 shandong enginee...
  • 49 篇 network and data...
  • 48 篇 college of compu...
  • 47 篇 school of comput...
  • 44 篇 tianjin key labo...
  • 36 篇 zhejiang lab
  • 36 篇 school of cyber ...
  • 35 篇 college of cyber...
  • 34 篇 school of comput...
  • 31 篇 school of comput...
  • 29 篇 peng cheng labor...
  • 28 篇 hubei key labora...
  • 28 篇 national enginee...
  • 27 篇 key lab of infor...
  • 26 篇 hubei engineerin...

作者

  • 188 篇 cheng xueqi
  • 149 篇 guo jiafeng
  • 48 篇 zhang ruqing
  • 45 篇 fan yixing
  • 44 篇 lan yanyan
  • 43 篇 shen huawei
  • 36 篇 jin xiaolong
  • 31 篇 liu jun
  • 30 篇 pang liang
  • 28 篇 jin hai
  • 25 篇 meng deyu
  • 23 篇 bi keping
  • 22 篇 chen enhong
  • 21 篇 de rijke maarten
  • 21 篇 liu qi
  • 21 篇 wang zhongmin
  • 20 篇 xueqi cheng
  • 20 篇 xu jun
  • 19 篇 hu shengshan
  • 19 篇 li zixuan

语言

  • 2,397 篇 英文
  • 421 篇 其他
  • 42 篇 中文
检索条件"机构=Key Lab of Network Data Science and Technology"
2859 条 记 录,以下是2321-2330 订阅
排序:
A dynamic mining algorithm for multi-granularity user’s learning preference based on ant colony optimization  1
收藏 引用
2nd IFIP TC 12 International Conference on Intelligence science, ICIS 2017
作者: Liu, Shengjun Chen, Shengbing Meng, Hu Anhui USTC-GZ Information Technology Co. Ltd. Hefei230031 China Key Lab of Network and Intelligent Information Processing Department of Computer Science and Technology Hefei University Hefei230601 China HEFEI City Cloud Data Center Co. Ltd. Hefei230094 China
Mining user’s learning preference is one of the key issues in the personalized online learning system, which is of great significance technology for modern educational. In this paper, using the hierarchical character... 详细信息
来源: 评论
Model inconsistent but correlated noise: Multi-view subspace learning with regularized Mixture of Gaussians
arXiv
收藏 引用
arXiv 2018年
作者: Yong, Hongwei Meng, Deyu Li, Jinxing Zuo, Wangmeng Zhang, Lei Department of Computing Hong Kong Polytechnic University Hong Kong Hong Kong School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xian Jiaotong University School of Computer Science and Technology Harbin Institute of Technology Harbin150001 China
Multi-view subspace learning (MSL) aims to find a low-dimensional subspace of the data obtained from multiple views. Different from single view case, MSL should take both common and specific knowledge among different ... 详细信息
来源: 评论
Influence maximization with ε-almost submodular threshold functions  17
Influence maximization with ε-almost submodular threshold f...
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Qiang Li Wei Chen Xiaoming Sun Jialin Zhang CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Microsoft Research
Influence maximization is the problem of selecting k nodes in a social network to maximize their influence spread. The problem has been extensively studied but most works focus on the submodular influence diffusion mo...
来源: 评论
Cubic medium field equation public key cryptosystem
收藏 引用
International Journal of network Security 2018年 第3期20卷 472-477页
作者: Lu, Gang Xue, Linyuan Nie, Xuyun Qin, Zhiguang Liu, Bo School of Information and Software Engineering University of Electronic Science and Technology of China 4 Jianshe North Rd 2nd Section Chenghua Qu Chengdu610054 China State Key Laboratory of Information Security Institute of Information Engineering Beijing100093 China Network and Data Security Key Laboratory of Sichuan Province Chengdu610054 China
Medium Field Equation (MFE) multivariate public key cryptosystems were broken by High Order Linearization Equation (HOLE) attack. In order to avoid HOLE attack, we proposed an improvement of MFE, Cubic MFE public key ... 详细信息
来源: 评论
Dynamic priority algorithm for modern tram based on MADM  2
Dynamic priority algorithm for modern tram based on MADM
收藏 引用
2nd IEEE International Conference on Intelligent Transportation Engineering, ICITE 2017
作者: Wu, Jiaqi Yu, Yang Lin, Xiaoyong College of Transportation Science and Technology Nanjing Tech University Nanjing210009 China Key Lab of Broadband Wireless Communication and Sensor Network Technology Nanjing University of Posts and Telecommunications Ministry of Education Nanjing210003 China
Analyzing the influence on traffic flow at intersection according to the driving characteristics of modern tram with different lane layout types. Proposing a method of dynamic priority algorithm (DPA) based on the ide... 详细信息
来源: 评论
Secure Medical data Collection via Local Differential Privacy
Secure Medical Data Collection via Local Differential Privac...
收藏 引用
IEEE International Conference on Computer and Communications
作者: Zhiqiang Wang Pingchuan Ma Ruming Wang Jianyi Zhang Yaping Chi Yanzhe Ma Tao Yang Information Technology Research Base of Civil Aviation Administration of China Civil Aviation University of China Tianjin China Beijing Electronic Science and Technology Institute Beijing China Hainan University Haikou China Ministry of Public Security Key Lab of Information Network Security Shanghai China
As the volume of medical data mining increases, so do the need to preserve patient privacy. And the exposure of medical data may degrade the level of health care service and reduce the trust of patients. Local Differe... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
GRB 221009A: the B.O.A.T Burst that Shines in Gamma Rays
arXiv
收藏 引用
arXiv 2024年
作者: Axelsson, M. Ajello, M. Arimoto, M. Baldini, L. Ballet, J. Baring, M.G. Bartolini, C. Bastieri, D. Becerra Gonzalez, J. Bellazzini, R. Berenji, B. Bissaldi, E. Blandford, R.D. Bonino, R. Bruel, P. Buson, S. Cameron, R.A. Caputo, R. Caraveo, P.A. Cavazzuti, E. Cheung, C.C. Chiaro, G. Cibrario, N. Ciprini, S. Cozzolongo, G. Cristarella Orestano, P. Crnogorcevic, M. Cuoco, A. Cutini, S. Ammando, F.D. De Gaetano, S. di Lalla, N. Dinesh, A. Di Tria, R. Di Venere, L. Domínguez, A. Fegan, S.J. Ferrara, E.C. Fiori, A. Franckowiak, A. Fukazawa, Y. Funk, S. Fusco, P. Galanti, G. Gargano, F. Gasbarra, C. Germani, S. Giacchino, F. Giglietto, N. Giliberti, M. Gill, R. Giordano, F. Giroletti, M. Granot, J. Green, D. Grenier, I.A. Guiriec, S. Gustafsson, M. Hashizume, M. Hays, E. Hewitt, J.W. Horan, D. Kayanoki, T. Kuss, M. Laviron, A. Li, J. Liodakis, I. Longo, F. Loparco, F. Lorusso, L. Lott, B. Lovellette, M.N. Lubrano, P. Maldera, S. Malyshev, D. Manfreda, A. Martí-Devesa, G. Martinelli, R. Martinez Castellanos, I. Mazziotta, M.N. McEnery, J.E. Mereu, I. Meyer, M. Michelson, P.F. Mirabal, N. Mitthumsiri, W. Mizuno, T. Monti-Guarnieri, P. Monzani, M.E. Morishita, T. Morselli, A. Moskalenko, I.V. Negro, M. Niwa, R. Omodei, N. Orienti, M. Orlando, E. Paneque, D. Panzarini, G. Persic, M. Pesce-Rollins, M. Petrosian, V. Pillera, R. Piron, F. Porter, T.A. Principe, G. Racusin, J.L. Rainò, S. Rando, R. Rani, B. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ryde, F. Sánchez-Conde, M. Saz Parkinson, P.M. Serini, D. Sgrò, C. Sharma, V. Siskind, E.J. Spandre, G. Spinelli, P. Suson, D.J. Tajima, H. Tak, D. Thayer, J.B. Torres, D.F. Valverde, J. Zaharijas, G. Lesage, S. Briggs, M.S. Burns, E. Bala, S. Bhat, P.N. Cleveland, W.H. Dalessi, S. de Barra, C. Gibby, M. Giles, M.M. Hamburg, R. Hristov, B.A. Hui, C.M. Kocevski, D. Mailyan, B. Malacaria, C. McBreen, S. Poolakkil, S. Roberts, O.J. Scotton, L. Veres, P. von Kienlin, A. Wilson-Hodge, C.A. Wood, J. Department of Physics KTH Royal Institute of Technology AlbaNova StockholmSE-106 91 Sweden The Oskar Klein Centre for Cosmoparticle Physics AlbaNova StockholmSE-106 91 Sweden Department of Physics and Astronomy Clemson University Kinard Lab of Physics ClemsonSC29634-0978 United States Faculty of Mathematics and Physics Institute of Science and Engineering Kanazawa University Kakuma Ishikawa Kanazawa920-1192 Japan Università di Pisa Istituto Nazionale di Fisica Nucleare Sezione di Pisa PisaI-56127 Italy Université Paris-Saclay Université Paris Cité CEA CNRS AIM Gif-sur-YvetteF-91191 Cedex France Rice University Department of Physics and Astronomy MS-108 P. O. Box 1892 HoustonTX77251 United States Istituto Nazionale di Fisica Nucleare Sezione di Bari BariI-70126 Italy Università degli studi di Trento via Calepina 14 Trento38122 Italy Istituto Nazionale di Fisica Nucleare Sezione di Padova PadovaI-35131 Italy Dipartimento di Fisica e Astronomia "G. Galilei" Università di Padova Via F. Marzolo 8 PadovaI-35131 Italy Center for Space Studies and Activities "G. Colombo" University of Padova Via Venezia 15 PadovaI-35131 Italy Instituto de Astrofísica de Canarias Universidad de La Laguna Dpto. Astrofísica La Laguna Tenerife 38200 Spain Istituto Nazionale di Fisica Nucleare Sezione di Pisa PisaI-56127 Italy California State University Los Angeles Department of Physics and Astronomy Los AngelesCA90032 United States Dipartimento di Fisica "M. Merlin" dell’Università e del Politecnico di Bari via Amendola 173 BariI-70126 Italy W. W. Hansen Experimental Physics Laboratory Kavli Institute for Particle Astrophysics and Cosmology Department of Physics SLAC National Accelerator Laboratory Stanford University StanfordCA94305 United States Istituto Nazionale di Fisica Nucleare Sezione di Torino TorinoI-10125 Italy Dipartimento di Fisica Università degli Studi di Torino TorinoI-10125 Italy Laboratoire Leprince-Ringuet CNRS IN2P3 Éc
We present a complete analysis of Fermi Large Area Telescope (LAT) data of GRB 221009A, the brightest Gamma-Ray Burst (GRB) ever detected. The burst emission above 30 MeV detected by the LAT preceded by 1 s the low-en... 详细信息
来源: 评论
Sparse DNNs with improved adversarial robustness  18
Sparse DNNs with improved adversarial robustness
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Yiwen Guo Chao Zhang Changshui Zhang Yurong Chen Intel Labs China Academy for Advanced Interdisciplinary Studies Center for Data Science Peking University Institute for Artificial Intelligence Tsinghua University (THUAI) State Key Lab of Intelligent Technologies and Systems Beijing National Research Center for Information Science and Technology (BNRis) Department of Automation Tsinghua University
Deep neural networks (DNNs) are computationally/memory-intensive and vulnerable to adversarial attacks, making them prohibitive in some real-world applications. By converting dense models into sparse ones, pruning app...
来源: 评论
Part-based visual tracking via structural support correlation filter
arXiv
收藏 引用
arXiv 2018年
作者: Ji, Zhangjian Feng, Kai Qian, Yuhua School of Computer and Information Technology Shanxi University Taiyuan China Key Lab. of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China Institute of Big Data Science and Industry Shanxi University Taiyuan China
Recently, part-based and support vector machines (SVM) based trackers have shown favorable performance. Nonetheless, the time-consuming online training and updating process limit their real-time applications. In order... 详细信息
来源: 评论