咨询与建议

限定检索结果

文献类型

  • 1,538 篇 期刊文献
  • 1,285 篇 会议
  • 1 册 图书

馆藏范围

  • 2,824 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,938 篇 工学
    • 1,348 篇 计算机科学与技术...
    • 1,131 篇 软件工程
    • 462 篇 信息与通信工程
    • 220 篇 生物工程
    • 219 篇 电气工程
    • 200 篇 控制科学与工程
    • 172 篇 电子科学与技术(可...
    • 144 篇 光学工程
    • 108 篇 机械工程
    • 104 篇 生物医学工程(可授...
    • 102 篇 化学工程与技术
    • 83 篇 网络空间安全
    • 75 篇 仪器科学与技术
    • 59 篇 交通运输工程
    • 56 篇 安全科学与工程
    • 54 篇 动力工程及工程热...
    • 48 篇 材料科学与工程(可...
    • 45 篇 土木工程
  • 1,022 篇 理学
    • 502 篇 数学
    • 279 篇 物理学
    • 255 篇 生物学
    • 178 篇 统计学(可授理学、...
    • 93 篇 化学
    • 75 篇 系统科学
  • 523 篇 管理学
    • 278 篇 图书情报与档案管...
    • 257 篇 管理科学与工程(可...
    • 93 篇 工商管理
  • 110 篇 医学
    • 87 篇 临床医学
    • 63 篇 基础医学(可授医学...
  • 85 篇 法学
    • 63 篇 社会学
  • 43 篇 经济学
  • 33 篇 农学
  • 16 篇 教育学
  • 15 篇 军事学
  • 10 篇 文学
  • 3 篇 艺术学

主题

  • 110 篇 semantics
  • 75 篇 feature extracti...
  • 65 篇 deep learning
  • 64 篇 training
  • 54 篇 accuracy
  • 42 篇 computational mo...
  • 40 篇 machine learning
  • 40 篇 federated learni...
  • 35 篇 data mining
  • 35 篇 graph neural net...
  • 34 篇 object detection
  • 33 篇 image segmentati...
  • 31 篇 privacy
  • 30 篇 optimization
  • 28 篇 data models
  • 27 篇 forecasting
  • 26 篇 generative adver...
  • 26 篇 neural networks
  • 26 篇 knowledge graph
  • 25 篇 reinforcement le...

机构

  • 162 篇 university of ch...
  • 80 篇 cas key lab of n...
  • 71 篇 shandong provinc...
  • 63 篇 cas key laborato...
  • 60 篇 key laboratory o...
  • 49 篇 network and data...
  • 48 篇 college of compu...
  • 46 篇 shandong enginee...
  • 46 篇 tianjin key labo...
  • 45 篇 school of comput...
  • 35 篇 zhejiang lab
  • 34 篇 college of cyber...
  • 32 篇 school of comput...
  • 31 篇 school of comput...
  • 31 篇 school of cyber ...
  • 28 篇 key lab of infor...
  • 28 篇 peng cheng labor...
  • 26 篇 hubei key labora...
  • 25 篇 national enginee...
  • 25 篇 cas key lab of n...

作者

  • 185 篇 cheng xueqi
  • 143 篇 guo jiafeng
  • 44 篇 lan yanyan
  • 43 篇 shen huawei
  • 43 篇 zhang ruqing
  • 42 篇 fan yixing
  • 34 篇 jin xiaolong
  • 28 篇 pang liang
  • 26 篇 liu jun
  • 25 篇 meng deyu
  • 25 篇 jin hai
  • 22 篇 bi keping
  • 21 篇 chen enhong
  • 21 篇 liu qi
  • 21 篇 wang zhongmin
  • 20 篇 de rijke maarten
  • 20 篇 chen yanping
  • 20 篇 xu jun
  • 19 篇 li tao
  • 18 篇 zhang lei

语言

  • 2,632 篇 英文
  • 149 篇 其他
  • 43 篇 中文
检索条件"机构=Key Lab of Network Data Science and Technology"
2824 条 记 录,以下是231-240 订阅
排序:
Splicer+: Secure Hub Placement and Deadlock-Free Routing for Payment Channel network Scalability
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Lingxiao Dong, Xuewen Wang, Wei Gao, Sheng Qu, Qiang Tian, Wensheng Shen, Yulong The School of Computer Science and Technology Xidian University Xi’an710071 China The Shaanxi Key Laboratory of Network and System Security Xi’an710071 China The Beijing Key Laboratory of Security and Privacy in Intelligent Transportation Beijing Jiaotong University Beijing100044 China The School of Information Central University of Finance and Economics Beijing100081 China The Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Huawei Blockchain Lab Huawei Cloud Tech Co. Ltd. Shenzhen518055 China The Nanhu Lab Jiaxing314001 China The Cryptology and Computer Security Laboratory Shanghai Jiao Tong University Shanghai200240 China
Payment channel hub (PCH) is a promising approach for payment channel networks (PCNs) to improve efficiency by deploying robust hubs to steadily process off-chain transactions. However, existing PCHs, often preplaced ... 详细信息
来源: 评论
LMP-GAN: Out-Of-Distribution Detection For Non-Control data Malware Attacks
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年 PP卷 PP页
作者: Wood, David Kapp, David Kebede, Temesgen Hirakawa, Keigo Wuhan University School of Computer Science China Wuhan University National Engineering Research Center for Multimedia Software Hubei Key Laboratory of Multimedia and Network Communication Engineering China Zhongguancun Academy China Wuhan University State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing China Sun Yat-sen University School of Geography and Planning China Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates Chongqing University College of Computer Science China The University of Tokyo Japan RIKEN Center for Advanced Intelligence Project Japan Intelligent Science & Technology Academy Limited CASIC China iFlytek Company Ltd. National Engineering Research Center of Speech and Language Information Processing China Nanyang Technological University College of Computing & Data Science Singapore Henan Academy of Sciences Aerospace Information Research Institute China
Anomaly detection is a common application of machine learning. Out-of-distribution (OOD) detection in particular is a semi-supervised anomaly detection technique where the detection method is trained only on the inlie... 详细信息
来源: 评论
Understanding and Improving Neural Ranking Models from a Term Dependence View  15th
Understanding and Improving Neural Ranking Models from a Ter...
收藏 引用
15th Asia Information Retrieval Societies Conference, AIRS 2019
作者: Fan, Yixing Guo, Jiafeng Lan, Yanyan Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Recently, neural information retrieval (NeuIR) has attracted a lot of interests, where a variety of neural models have been proposed for the core ranking problem. Beyond the continuous refresh of the state-of-the-art ... 详细信息
来源: 评论
PPO-Based Vehicle Control for Ramp Merging Scheme Assisted by Enhanced C-V2X
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Qiong Ji, Maoxin Fan, Pingyi Wang, Kezhi Cheng, Nan Chen, Wen Letaief, Khaled B. The School of Internet of Things Engineering Jiangnan University Wuxi214122 China The Department of Electronic Engineering State Key laboratory of Space Network and Communications Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China The Department of Computer Science Brunel University Middlesex LondonUB8 3PH United Kingdom The State Key Lab. of ISN School of Telecommunications Engineering Xidian University Xi’an710071 China The Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China Hong Kong
On-ramp merging presents a critical challenge in autonomous driving, as vehicles from merging lanes need to dynamically adjust their positions and speeds while monitoring traffic on the main road to prevent collisions... 详细信息
来源: 评论
Multi-task representation learning for demographic prediction  38th
Multi-task representation learning for demographic predictio...
收藏 引用
38th European Conference on Information Retrieval Research, ECIR 2016
作者: Wang, Pengfei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Laboratory of Network Data Science and Technology Institute of Computing Technology Beijing China
Demographic attributes are important resources for market analysis, which are widely used to characterize different types of users. However, such signals are only available for a small fraction of users due to the dif... 详细信息
来源: 评论
Uplink Control Information Based Clustered Access and Discontinuous Reception Management for mMTC
收藏 引用
IEEE Communications Letters 2025年
作者: Wang, Shao-Di Wang, Chang-Long Wang, Hui-Ming Zhou, Feng Leung, Victor C. M. Xidian University Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education Xi’an710071 China Xi’an Jiaotong University School of Information and Communication Engineering Ministry of Education Key Lab for Intelligent Networks and Network Security Xi’an710049 China Shenzhen MSU BIT University Artificial Intelligence Research Institute Shenzhen518172 China Shenzhen University College of Computer Science and Software Engineering Shenzhen518060 China The University of British Columbia Department of Electrical and Computer Engineering VancouverBCV6T 1Z4 Canada
Uplink control information (UCI) and discontinuous reception (DRX) play important roles for massive machine type communication (mMTC). Despite their standalone significance, a conspicuous gap exists in comprehensively... 详细信息
来源: 评论
A Contrastive Pre-training Approach to Discriminative Autoencoder for Dense Retrieval  22
A Contrastive Pre-training Approach to Discriminative Autoen...
收藏 引用
31st ACM International Conference on Information and Knowledge Management, CIKM 2022
作者: Ma, Xinyu Zhang, Ruqing Guo, Jiafeng Fan, Yixing Cheng, Xueqi Cas Key Lab of Network Data Science and Technology Ict Cas University of Chinese Academy of Sciences Beijing China
Dense retrieval (DR) has shown promising results in information retrieval. In essence, DR requires high-quality text representations to support effective search in the representation space. Recent studies have shown t... 详细信息
来源: 评论
ICTNET at TREC 2019 Deep Learning Track  28
ICTNET at TREC 2019 Deep Learning Track
收藏 引用
28th Text REtrieval Conference, TREC 2019
作者: Chen, Jiangui Cai, Yinqiong Jiang, Haoquan University of Chinese Academy of Sciences Beijing China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology China
We participated in the Deep Learning Track at TREC 2019. We built a ranking system which combines a search component based on BM25 and a semantic matching component using pretraining knowledge. Our best run achieves N... 详细信息
来源: 评论
Efficient quantum state transmission via perfect quantum network coding
收藏 引用
science China(Information sciences) 2019年 第1期62卷 191-204页
作者: Zhen-Zhen LI Gang XU Xiu-Bo CHEN Zhiguo QU Xin-Xin NIU Yi-Xian YANG Information Security Center State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and Telecommunications Guizhou Provincial Key Laboratory of Public Big Data Guizhou University Jiangsu Engineering Center of Network Monitoring Nanjing University of Information Science and Technology
Quantum network coding with the assistance of auxiliary resources can achieve perfect transmission of the quantum state. This paper suggests a novel perfect network coding scheme to efficiently solve the quantum k-pai... 详细信息
来源: 评论
Sparse Word Embeddings Using 1 Regularized Online Learning
Sparse Word Embeddings Using 1 Regularized Online Learning
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Sun, Fei Guo, Jiafeng Lan, Yanyan Xu, Jun Cheng, Xueqi CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences China
Recently, Word2Vec tool has attracted a lot of interest for its promising performances in a variety of natural language processing (NLP) tasks. However, a critical issue is that the dense word representations learned ... 详细信息
来源: 评论