咨询与建议

限定检索结果

文献类型

  • 80 篇 会议
  • 11 篇 期刊文献

馆藏范围

  • 91 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 30 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
  • 37 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 35 篇 理学
    • 30 篇 数学
    • 9 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 物理学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 support vector m...
  • 4 篇 data mining
  • 4 篇 rough set
  • 4 篇 fuzzy measure
  • 4 篇 decision trees
  • 4 篇 training
  • 3 篇 support vector m...
  • 3 篇 random variables
  • 3 篇 dominance relati...
  • 3 篇 fuzzy integral
  • 3 篇 classification a...
  • 3 篇 classification (...
  • 2 篇 information syst...
  • 2 篇 learning systems
  • 2 篇 core vector mach...
  • 2 篇 rough sets
  • 2 篇 approximation al...
  • 2 篇 core set
  • 2 篇 noise measuremen...
  • 2 篇 decision tree

机构

  • 23 篇 key lab. of mach...
  • 9 篇 key lab.of machi...
  • 6 篇 college of mathe...
  • 6 篇 key lab.of machi...
  • 5 篇 key lab.in machi...
  • 4 篇 key lab of machi...
  • 4 篇 key lab. of mach...
  • 4 篇 key lab. of mach...
  • 3 篇 key lab. in mach...
  • 3 篇 college of scien...
  • 3 篇 center for machi...
  • 3 篇 department of in...
  • 3 篇 key lab. in mach...
  • 2 篇 beijing key lab ...
  • 2 篇 key laboratory o...
  • 2 篇 college of mathe...
  • 2 篇 key lab. in mach...
  • 2 篇 key lab of high ...
  • 2 篇 beijing academy ...
  • 2 篇 graduate univers...

作者

  • 9 篇 yan li
  • 9 篇 li yan
  • 8 篇 xi-zhao wang
  • 5 篇 yuan fang
  • 4 篇 yan zhan
  • 4 篇 jun-hai zhai
  • 4 篇 su-fang zhang
  • 4 篇 jun-fen chen
  • 3 篇 li zhao
  • 3 篇 zhan yan
  • 3 篇 guo-fang zhang
  • 3 篇 wang xizhao
  • 3 篇 zhai jun-hai
  • 3 篇 lu shuxia
  • 3 篇 qun-feng zhang
  • 3 篇 chen hao
  • 3 篇 shuxia lu
  • 3 篇 ai-xia chen
  • 3 篇 zhai junhai
  • 3 篇 ning li

语言

  • 90 篇 英文
  • 1 篇 其他
检索条件"机构=Key Lab. In Machine Learning and Computational Intelligence"
91 条 记 录,以下是71-80 订阅
排序:
Support vector machine for suppressing error method
Support vector machine for suppressing error method
收藏 引用
1st International Conference on Information Science and Engineering, ICISE2009
作者: Lu, Shuxia Shi, Pu Chen, Ming Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding China Baoding Pascali Cable TV Integrater Information Network Co. Ltd. Baoding China College of Mathematics and Computer Science Hebei University Baoding China
Support Vector machine (SVM) is sensitive to noises and outliers. For reducing the effect of noises and outliers, we propose a novel SVM for suppressing error function. The error function is limited to the interval of... 详细信息
来源: 评论
A deep web interface integration approach based on domain knowledge and submitting queries
收藏 引用
Journal of Information and computational Science 2009年 第3期6卷 1103-1111页
作者: Yuan, Fang Liu, Hongfei Wei, Yonggang Yao, Zengli College of Mathematics and Computer Science Hebei University Hebei Baoding 071002 China Key Lab. in Machine Learning and Computational Intelligence of Hebei Province Hebei Baoding 071002 China
Deep Web can provide us a great amount of high quality information. In order to make full use of the information, it is becoming urgent to establish Deep Web data integration system, in which Deep Web interface integr... 详细信息
来源: 评论
MINING THE HOTTEST TOPICS ON CHINESE WEBPAGE BASED ON THE IMPROVED K-MEANS PARTITIONING
MINING THE HOTTEST TOPICS ON CHINESE WEBPAGE BASED ON THE IM...
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: YU WANG YA-HUI XI LIANG WANG Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Science HebeiUniversity Baoding 071002 China
This paper presents a new method for the mining the hottest topics on Chinese webpage which is based on the improved k-means partitioning algorithm. The dictionary applied to word segmentation is reduced by deleting w... 详细信息
来源: 评论
APPLICATION OF INTELLIGENT DECISION SUPPORT TECHNOLOGY IN POWER SYSTEM
APPLICATION OF INTELLIGENT DECISION SUPPORT TECHNOLOGY IN PO...
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: HAO CHEN YAN ZHAN HAI-YAN LIU Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 China
Distribution network cabling planning is a very complex project This paper proposes the application of intelligent decision support technology in Power System. By adding a module library and the concept of model manag... 详细信息
来源: 评论
AN INEXACT REASONING ALGORITHM BASED ON INTERACTION WITH FUZZY RULE MATRIX TRANSFORMATION
AN INEXACT REASONING ALGORITHM BASED ON INTERACTION WITH FUZ...
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: AI-XIA CHEN NING LI LI ZHAO HONG-TAO ZHU GUO-FANG ZHANG Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 China
This paper presents a reasoning algorithm based on interaction with fuzzy rule matrix transformation, and applies it to completing the patterns. Then the new full patterns will be used in training and synthetic judgme... 详细信息
来源: 评论
TWO-PLY ITERATIVE DEEPENING IN CHINESE-CHESS COMPUTER GAME
TWO-PLY ITERATIVE DEEPENING IN CHINESE-CHESS COMPUTER GAME
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: XI-ZHAO WANG YU-LIN HE PAN SU WEN-LIANG LI Key Lab.for Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
In Chinese-chess computer game (CCCG), a computer player could find the best move for a given board position by using alpha-beta search algorithm. The technique of iterative deepening is an enhancement to alpha-beta s... 详细信息
来源: 评论
A NEW HEURISTIC OF THE DECISION TREE INDUCTION
A NEW HEURISTIC OF THE DECISION TREE INDUCTION
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: NING LI LI ZHAO AI-XIA CHEN QING-WU MENG GUO-FANG ZHANG Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
Decision tree induction is one of the useful approaches for extracting classification knowledge from a set of feature-based instances. The most popular heuristic information used in the decision tree generation is the... 详细信息
来源: 评论
A PSO-GD-BASED HYBRID ALGORITHM FOR GENERAL FUZZY MEASURE DETERMINATION
A PSO-GD-BASED HYBRID ALGORITHM FOR GENERAL FUZZY MEASURE DE...
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: HUAN-YU ZHAO XI-ZHAO WANG Key Lab.for Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
Determining fuzzy measure from data is an important topic in some practical applications. Some computing techniques are adopted, such as particle swarm optimization (PSO) and gradient descent algorithm (GD), to identi... 详细信息
来源: 评论
A DYNAMIC FUZZY MEASURE FOR MULTIPLE CLASSIFIER FUSION
A DYNAMIC FUZZY MEASURE FOR MULTIPLE CLASSIFIER FUSION
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: YA-JING ZHANG XUE-FEI LI JUN-FEN CHEN HUI-MIN FENG College of Science Agricultural University of Hebei Baoding 071001 China Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Scie
It has been shown that the fuzzy integral is an effective tool for the fusion of multiple classifiers. Of primary importance in the development of the system is the choice of the measure which embodies the importance ... 详细信息
来源: 评论
USING 2-ADDITIVE FUZZY MEASURE IN MULTIPLE CLASSIFIER SYSTEM
USING 2-ADDITIVE FUZZY MEASURE IN MULTIPLE CLASSIFIER SYSTEM
收藏 引用
2009 International Conference on machine learning and Cybernetics(2009机器学习与控制论国际会议)
作者: AI-XIA CHEN GUO-FANG ZHANG NING LI LI ZHAO GUO-QIANG YUAN Key Lab.of Machine Learning and Computational Intelligence College of Mathematics and Computer Scie Department of Basic Courses Hebei College of Finance Baoding 071051 China
Fuzzy measure and integral are widely used in Multiple Classifier System (MCS). But the number of coefficients involved in the fuzzy integral model grows exponentially with the number of classifiers to be aggregated. ... 详细信息
来源: 评论