咨询与建议

限定检索结果

文献类型

  • 112 篇 会议
  • 72 篇 期刊文献

馆藏范围

  • 184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 143 篇 工学
    • 73 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 38 篇 信息与通信工程
    • 30 篇 控制科学与工程
    • 23 篇 生物工程
    • 22 篇 电子科学与技术(可...
    • 22 篇 生物医学工程(可授...
    • 19 篇 光学工程
    • 19 篇 电气工程
    • 13 篇 机械工程
    • 11 篇 仪器科学与技术
    • 11 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 6 篇 航空宇航科学与技...
    • 5 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 环境科学与工程(可...
  • 97 篇 理学
    • 62 篇 数学
    • 31 篇 物理学
    • 21 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 10 篇 化学
    • 8 篇 系统科学
  • 25 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 6 篇 农学
  • 3 篇 法学
  • 2 篇 经济学
  • 2 篇 教育学
  • 2 篇 军事学

主题

  • 6 篇 machine learning
  • 4 篇 image segmentati...
  • 4 篇 feature extracti...
  • 3 篇 support value tr...
  • 3 篇 motion planning
  • 3 篇 electroencephalo...
  • 3 篇 image
  • 3 篇 lifting scheme
  • 3 篇 mapped least squ...
  • 3 篇 sliding mode con...
  • 3 篇 differential pri...
  • 3 篇 semantics
  • 3 篇 synthetic apertu...
  • 3 篇 correlation
  • 3 篇 multi-agent syst...
  • 2 篇 image enhancemen...
  • 2 篇 complex networks
  • 2 篇 speckle
  • 2 篇 conferences
  • 2 篇 deep neural netw...

机构

  • 8 篇 key laboratory o...
  • 7 篇 key laboratory o...
  • 7 篇 key lab. of inte...
  • 6 篇 tencent youtu la...
  • 6 篇 s-lab nanyang te...
  • 5 篇 key lab of image...
  • 4 篇 zhejiang lab
  • 4 篇 school of artifi...
  • 3 篇 school of mechan...
  • 3 篇 image analysis l...
  • 3 篇 college of life ...
  • 3 篇 guangxi colleges...
  • 3 篇 state key lab of...
  • 3 篇 key lab. for ima...
  • 3 篇 control and inte...
  • 3 篇 shanghai jiao to...
  • 3 篇 guangxi colleges...
  • 3 篇 image analysis l...
  • 3 篇 school of cognit...
  • 3 篇 control and inte...

作者

  • 8 篇 jiao licheng
  • 8 篇 sang nong
  • 7 篇 hai-tao zhang
  • 7 篇 yongji wang
  • 7 篇 cao zhiguo
  • 7 篇 xiang xiang
  • 6 篇 soltanian-zadeh ...
  • 6 篇 xian ke
  • 6 篇 jian liu
  • 6 篇 liu jian
  • 5 篇 ding mingyue
  • 5 篇 zhang hai-tao
  • 5 篇 hong liu
  • 5 篇 li xingyi
  • 5 篇 gao changxin
  • 5 篇 wang yongji
  • 4 篇 cai chao
  • 4 篇 jinwen tian
  • 4 篇 wang chengjie
  • 4 篇 cao xuan

语言

  • 174 篇 英文
  • 5 篇 其他
  • 5 篇 中文
检索条件"机构=Key Lab. for Image Processing and Intelligent Control"
184 条 记 录,以下是71-80 订阅
排序:
Adversarial refinement network for human motion prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chao, Xianjin Bin, Yanrui Chu, Wenqing Cao, Xuan Ge, Yanhao Wang, Chengjie Li, Jilin Huang, Feiyue Leung, Howard City University of Hong Kong Hong Kong Hong Kong Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Tencent Youtu Lab Shanghai China
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough... 详细信息
来源: 评论
Manipulab.lity and Robustness Optimization of the Cable-Driven Redundant Soft Manipulator
Manipulability and Robustness Optimization of the Cable-Driv...
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Yi Shen Yang Hong Wei Zhou Ruochen Tai Ye Yuan Han Ding School of Artificial Intelligence and Automation Key Laboratory of Image Processing and Intelligent Control Huazhong University of Science and Technology Wuhan People’s Republic of China School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan People’s Republic of China State Key Lab of Digital Manufacturing Equipment and Technology Huazhong University of Science and Technology Wuhan People’s Republic of China
Redundancy makes soft manipulators manage to complete a variety of tasks in complex environments. However, a pseudo-inverse kinematics controller for redundant soft manipulators simply maximizes the manipulab.lity whi... 详细信息
来源: 评论
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
Chinese control Conference (CCC)
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunications and Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) Nanjing PR China School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry ofChina Huazhong University of Science and Technology Wuhan PR China
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Neighborhood Interval Observer Based Coordination control for Multi-agent Systems with Disturbances ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 10994-10999页
作者: Xiaoling Wang Guo-Ping Jiang Wen Yang Housheng Su Xiaofan Wang College of Automation Nanjing University of Posts and Telecommunications Nanjing 210023 China and also with Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot) Nanjing 210023 China Key Laboratory of Advanced Control and Optimization for Chemical Processes East China University of Science and Technology Shanghai 200237 China School of Artifcial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China Department of Automation Shanghai University Shanghai 200072 China
This paper focuses on multi-agent systems with uncertain disturbances, in which only the bounding functions on the disturbances and the bounds on the initial state of each agent are known. By designing a neighborhood ... 详细信息
来源: 评论
Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Dongrui Xu, Jiaxin Fang, Weili Zhang, Yi Yang, Liuqing Xu, Xiaodong Luo, Hanbin Yu, Xiang The Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Zhejiang Lab Hangzhou311121 China The School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan430074 China The College of Public Administration Huazhong University of Science and Technology Wuhan430074 China The University of Michigan Ann ArborMI48109 United States The School of Management and Sino European Institute for Intellectual Property Huazhong University of Science and Technology Wuhan430074 China
Physiological computing uses human physiological data as system inputs in real time. It includes, or significantly overlaps with, brain-computer interfaces, affective computing, adaptive automation, health informatics... 详细信息
来源: 评论
BoostTree and BoostForest for Ensemble Learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhao, Changming Wu, Dongrui Huang, Jian Yuan, Ye Zhang, Hai-Tao Peng, Ruimin Shi, Zhenhua Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China The Autonomous Intelligence Unmanned Systems Engineering Research Center of Ministry of Education of China The State Key Lab of Digital Manufacturing Equipment and Technology Wuhan China
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have ... 详细信息
来源: 评论
Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report
arXiv
收藏 引用
arXiv 2021年
作者: Ignatov, Andrey Malivenko, Grigory Plowman, David Shukla, Samarth Timofte, Radu Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Wang, Yiran Li, Xingyi Shi, Min Xian, Ke Cao, Zhiguo Du, Jin-Hua Wu, Pei-Lin Ge, Chao Yao, Jiaoyang Tu, Fangwen Li, Bo Yoo, Jung Eun Seo, Kwanggyoon Xu, Jialei Li, Zhenyu Liu, Xianming Jiang, Junjun Chen, Wei-Chi Joya, Shayan Fan, Huanhuan Kang, Zhaobing Li, Ang Feng, Tianpeng Liu, Yang Sheng, Chuannan Yin, Jian Benavides, Fausto T. Computer Vision Lab ETH Zurich Switzerland Ltd AI Witchlabs Switzerland Tencent GY-Lab China Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Nanjing Artificial Intelligence Chip Research Institute of Automation Chinese Academy of Sciences China Black Sesame Technologies Inc. Singapore Singapore Visual Media Lab KAIST Korea Republic of Harbin Institute of Technology China Peng Cheng Laboratory China Multimedia and Computer Vision Laboratory National Cheng Kung University Taiwan Samsung Research UK United Kingdom OPPO Research Institute China ETH Zurich Switzerland
Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and t... 详细信息
来源: 评论
Universal Adversarial Perturbations for CNN Classifiers in EEG-Based BCIs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Zihan Meng, Lubin Zhang, Xiao Fang, Weili Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China School of Design and Environment National University of Singapore 117566 Singapore Zhejiang Lab Hangzhou311121 China
Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial... 详细信息
来源: 评论
Sparse Least Square Support Vector Machines based on Random Entropy  36
Sparse Least Square Support Vector Machines based on Random ...
收藏 引用
第36届中国控制会议
作者: Wenlu Ma Han Liu Faculty of Automation and Information Engineering Xi'an University of Technology Shaanxi Key Lab. of Complex System Control and Intelligent Information Processing Faculty of Automation and Information EngineeringXi’an University of Technology
Least squares support vector machines(LSSVM) has a good performance in small data samples, but can't solve the large-scale sample problems. In this paper, large data set sparse least squares support vector machine... 详细信息
来源: 评论
Review of intelligent computing application  1st
Review of intelligent computing application
收藏 引用
1st International Conference on Smart Vehicular Technology, Transportation, Communication and Applications, VTCA 2017
作者: Wang, Yiou Liu, Tianyuan Zhang, Fuquan Xu, Lin Ding, Gangyi Xiong, Rui Liu, Fei Beijing Institute of Science and Technology Information Beijing100044 China Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Digital Performance and Simulation Technology Lab. School of Software Beijing Institute of Technology Beijing100081 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang Univeristy Fuzhou350121 China Innovative Information Industry Research Institute Fujian Normal University Fuzhou350300 China
intelligent computing systems can automatically sense environmental changes in the sensor network, make judgments and prediction on the environmental status in time, and provide response strategies in different enviro... 详细信息
来源: 评论