咨询与建议

限定检索结果

文献类型

  • 37 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 41 篇 计算机科学与技术...
    • 41 篇 软件工程
    • 19 篇 控制科学与工程
    • 11 篇 信息与通信工程
    • 6 篇 生物工程
    • 3 篇 光学工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 农业工程
  • 34 篇 理学
    • 25 篇 数学
    • 7 篇 系统科学
    • 6 篇 生物学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 物理学
  • 28 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 7 篇 support vector m...
  • 3 篇 decision trees
  • 3 篇 classification (...
  • 2 篇 deep neural netw...
  • 2 篇 random variables
  • 2 篇 data mining
  • 2 篇 mapreduce
  • 2 篇 websites
  • 2 篇 semantics
  • 2 篇 ontology
  • 1 篇 surveys
  • 1 篇 conferences
  • 1 篇 dendrites
  • 1 篇 query languages
  • 1 篇 learning systems
  • 1 篇 integral equatio...
  • 1 篇 inverse problems
  • 1 篇 global error
  • 1 篇 generative adver...
  • 1 篇 xml

机构

  • 23 篇 key lab. of mach...
  • 5 篇 college of mathe...
  • 3 篇 big data institu...
  • 3 篇 key lab. in mach...
  • 3 篇 key lab. in mach...
  • 2 篇 computer vision ...
  • 2 篇 college of mathe...
  • 2 篇 key laboratory o...
  • 2 篇 college of mathe...
  • 2 篇 key lab. in mach...
  • 2 篇 department of ps...
  • 2 篇 center for brain...
  • 2 篇 norment institut...
  • 2 篇 centre for neura...
  • 2 篇 institute of neu...
  • 2 篇 the shenzhen key...
  • 2 篇 the college of m...
  • 2 篇 graduate univers...
  • 2 篇 key lab. of mach...
  • 2 篇 department of in...

作者

  • 6 篇 wang xizhao
  • 6 篇 li yan
  • 5 篇 wang ran
  • 5 篇 yuan fang
  • 5 篇 wang xi-zhao
  • 3 篇 zhan yan
  • 3 篇 lu shuxia
  • 3 篇 chen hao
  • 3 篇 pourpanah farhad
  • 3 篇 chen sihong
  • 3 篇 he qing
  • 3 篇 zhang ming
  • 3 篇 shen haojing
  • 3 篇 li ning
  • 2 篇 van gool luc
  • 2 篇 zhai jun-hai
  • 2 篇 meng jie
  • 2 篇 lu shu-xia
  • 2 篇 yu rui-hua
  • 2 篇 cao gui-en

语言

  • 52 篇 英文
检索条件"机构=Key Lab. of Computer Vision and Machine Learning"
52 条 记 录,以下是41-50 订阅
排序:
A Review of Generalized Zero-Shot learning Methods
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Abdar, Moloud Luo, Yuxuan Zhou, Xinlei Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Jonathan Wu, Q.M. The Centre for Computer Vision and Deep Learning Department of Electrical and Computer Engineering University of Windsor WindsorONN9B 3P4 Canada Deakin University Australia The Department of Computer Science City University of Hong Kong Hong Kong The College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leve... 详细信息
来源: 评论
nnDetection: A Self-configuring Method for Medical Object Detection
arXiv
收藏 引用
arXiv 2021年
作者: Baumgartner, Michael Jäger, Paul F. Isensee, Fabian Maier-Hein, Klaus H. Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Interactive Machine Learning Group German Cancer Research Center Germany HIP Applied Computer Vision Lab. German Cancer Research Center Germany Pattern Analysis and Learning Group Heidelberg University Hospital Germany
Simultaneous localisation and categorization of objects in medical images, also referred to as medical object detection, is of high clinical relevance because diagnostic decisions often depend on rating of objects rat... 详细信息
来源: 评论
Selection of deep web database based on query relevance
收藏 引用
Journal of Information and Computational Science 2009年 第3期6卷 1113-1120页
作者: Yuan, Fang Fan, Jingchuan Liu, Shuang Zhang, Ming College of Mathematics and Computer Science Hebei University Hebei Baoding 071002 China Key Lab. in Machine Learning and Computational Intelligence of Hebei Province Hebei Baoding 071002 China College of Quality Technology Supervision Hebei University Hebei Baoding 071000 China
During recent years, there are more and more high-quality information in the Web database. Thus, it is becoming more and more important to find the most relevant Web database to user's query. In this paper, we pro... 详细信息
来源: 评论
A Review of Artificial Fish Swarm Algorithms: Recent Advances and Applications
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Yazdani, Danial College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China Department of Electrical and Computer Engineering University of Windsor Canada College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China Institute for Intelligent Systems Research and Innovation Deakin University Australia College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China School of Computer Science and Engineering Southern University of Science and Technology China
The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming and following behaviors. Owing to a number of salient properties, which inclu... 详细信息
来源: 评论
A mathematical model for efficient extraction of key locations from point-cloud data in track area
收藏 引用
Industrial Artificial Intelligence 2023年 第1期1卷 1-14页
作者: Chen, Shuyue Wu, Jiaolv Lu, Jian Wang, Xizhao College of Mathematics and Statistics Shenzhen University Shenzhen China School of Software Engineering Shenzhen Institue of Information Technology Shenzhen China Shenzhen No. 3 Vocational School of Technology Shenzhen China College of Engineering Huaqiao University Quanzhou China Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Key Lab. of Intelligent Information Process Shenzhen University Shenzhen China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
During the construction of a metro system, it is inevitable that deviations will occur between the excavated tunnel and the original designed scheme. As such, it is necessary to adjust the designed scheme to accommoda...
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
An Ordinal Random Forest and Its Parallel Implementation with MapReduce
An Ordinal Random Forest and Its Parallel Implementation wit...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Shanshan Wang Junhai Zhai Sufang Zhang Hong Zhu School of Computer Science and Technology Hebei University Baoding China Key Lab. of Machine Learning and Computational Intelligence Hebei University Baoding China College of Mathematics Zhejiang Normal University Jinhua China Hebei Branch of Meteorological Cadres Training Institute China Meteorological Administration Baoding China
Ordinal decision tree (ODT) can effectively deal with monotonic classification problems. However, it is difficult for the existing ordinal decision tree algorithms to learning ODT from large data sets. Based on the va... 详细信息
来源: 评论
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论