咨询与建议

限定检索结果

文献类型

  • 171 篇 会议
  • 110 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 164 篇 计算机科学与技术...
    • 137 篇 软件工程
    • 54 篇 信息与通信工程
    • 24 篇 生物工程
    • 22 篇 控制科学与工程
    • 13 篇 光学工程
    • 11 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 10 篇 交通运输工程
    • 9 篇 化学工程与技术
    • 7 篇 机械工程
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 材料科学与工程(可...
    • 5 篇 网络空间安全
    • 4 篇 冶金工程
  • 92 篇 理学
    • 58 篇 数学
    • 25 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 14 篇 物理学
    • 12 篇 化学
    • 10 篇 系统科学
  • 64 篇 管理学
    • 46 篇 图书情报与档案管...
    • 26 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 10 篇 法学
    • 7 篇 社会学
  • 7 篇 医学
    • 7 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 2 篇 教育学
  • 2 篇 文学
  • 2 篇 农学

主题

  • 10 篇 semantics
  • 10 篇 forecasting
  • 8 篇 data mining
  • 8 篇 feature extracti...
  • 5 篇 big data
  • 5 篇 contrastive lear...
  • 4 篇 object detection
  • 4 篇 deep neural netw...
  • 4 篇 xml
  • 4 篇 costs
  • 4 篇 embeddings
  • 4 篇 training
  • 4 篇 convolutional ne...
  • 3 篇 conferences
  • 3 篇 support vector m...
  • 3 篇 deep learning
  • 3 篇 task analysis
  • 3 篇 zero-shot learni...
  • 3 篇 graphics process...
  • 3 篇 signal encoding

机构

  • 22 篇 school of inform...
  • 18 篇 key lab of data ...
  • 8 篇 peng cheng labor...
  • 8 篇 key laboratory o...
  • 7 篇 key lab. of inte...
  • 7 篇 school of comput...
  • 7 篇 university of ch...
  • 7 篇 school of comput...
  • 7 篇 school of cyber ...
  • 7 篇 key lab of big d...
  • 7 篇 key lab of data ...
  • 6 篇 school of comput...
  • 5 篇 institute of inf...
  • 5 篇 moe key lab of d...
  • 5 篇 school of econom...
  • 5 篇 college of infor...
  • 5 篇 alibaba group
  • 5 篇 college of engin...
  • 4 篇 big data institu...
  • 4 篇 renmin universit...

作者

  • 30 篇 li xirong
  • 14 篇 chen hong
  • 12 篇 li cuiping
  • 11 篇 yang gang
  • 10 篇 liu jun
  • 8 篇 huang qingming
  • 8 篇 xu qianqian
  • 7 篇 cao juan
  • 7 篇 cao xiaochun
  • 6 篇 hong chen
  • 6 篇 zhang lingling
  • 6 篇 du xiaoyong
  • 6 篇 dong jianfeng
  • 6 篇 shi yong
  • 6 篇 liu jianxun
  • 6 篇 cuiping li
  • 5 篇 yu yong
  • 5 篇 yang zhiyong
  • 5 篇 xu jieping
  • 5 篇 gao jing

语言

  • 273 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"机构=Key Lab. of Data Engineering and Knowledge Engineering"
282 条 记 录,以下是251-260 订阅
排序:
Adversarial Learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task... 详细信息
来源: 评论
Syntax-enhanced Pre-trained model
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Incorporating Hidden Layer representation into Adversarial Attacks and Defences
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
In this paper, we propose a defence strategy to improves adversarial robustness incorporating hidden layer representation. The key of this defence strategy aims to compress or filter input’s information including adv... 详细信息
来源: 评论
Research on 3D geometric modeling of urban buildings based on airborne lidar point cloud and image  4
Research on 3D geometric modeling of urban buildings based o...
收藏 引用
4th International Conference on Geology, Mapping, and Remote Sensing, ICGMRS 2023
作者: Guo, Tianwei Dong, Kunfeng College of Mapping and Information Engineering West Yunnan University of Applied Sciences Yunnan Province Dali China Key Lab. of Mt. Real Scene Point Cloud Data Proc. and Applic. for Universities in Yunnan Province West Yunnan University of Applied Sciences Yunnan Province Dali China Multi Src. Data Fusion Real Scene 3D Constr. Research Scientific and Technological Innovation Team West Yunnan University of Applied Sciences Yunnan Province Dali China Yunnan Construction Investment First Investigation and Design Co. Yunnan Province Kunming China
Buildings are the most important elements in cities. Building urban building models is of great significance for the establishment of digital cities. The level of its modeling technology restricts the development of u... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China School of Cyber Science and Tech. Sun Yat-sen University Shenzhen Campus China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Biogeography-based optimization for cluster analysis
Biogeography-based optimization for cluster analysis
收藏 引用
International Conference on Computer, Communication and Computational Sciences, ICCCCS 2016
作者: Wu, Xueyan Wang, Hainan Chen, Zhimin Lu, Zhihai Phillips, Preetha Wang, Shuihua Zhang, Yudong School of Computer Science and Technology Nanjing Normal University NanjingJiangsu210023 China Key Laboratory of Statistical Information Technology & Data Mining State Statistics Bureau ChengduSichuan610225 China School of Computer and Information Engineering Henan Normal University XinxiangHenan453000 China School of Electronic Information Shanghai Dianji University Shanghai200240 China Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education Jilin University ChangchunJilin130012 China Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology GuilinGuangxi541004 China School of Natural Sciences and Mathematics Shepherd University ShepherdstownWV25443 United States West Virginia School of Osteopathic Medicine 400 N Lee St LewisburgWV24901 United States Department of Electrical Engineering The City College of New York CUNY New YorkNY10031 United States State Key Lab of CAD & CG Zhejiang University HangzhouZhejiang310027 China Manchester Metropolitan University ManchesterM156BH United Kingdom
With the aim of resolving the issue of cluster analysis more precisely and validly, a new approach was proposed based on biogeography-based optimization (abbreviated as BBO) algorithm. (Method) First, we reformulated ... 详细信息
来源: 评论
Accurate Latent Factor Analysis via Particle Swarm Optimizers
Accurate Latent Factor Analysis via Particle Swarm Optimizer...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Jia Chen Xin Luo MengChu Zhou School of Cyber Science and Technology Beihang University Beijing China Chongqing Key Lab. of Big Data and Intelligent Computing and the Chongqing Engineering Research Center of Big Data Application for Smart Cities Chongqing Institute of Green and Intelligent Technology Chongqing School University of Chinese Academy of Sciences Chongqing China New Jersey Institute of Technology Newark NJ USA
A stochastic-gradient-descent-based Latent Factor Analysis (LFA) model is highly efficient in representative learning of a High-Dimensional and Sparse (HiDS) matrix. Its learning rate adaptation is vital in ensuring i... 详细信息
来源: 评论
Preface
收藏 引用
计算机科学技术学报(英文版) 2007年 第2期22卷 插1-插2页
作者: Shan Wang Jian-Zhong Li Scholl of Information Key Lab Data Engineering and Knowledge EngineeringRenmin University of China Department of Computer Science and Technology Harbin Institute of Technology
Recent advances in database related applications propose many new challenges and have inspired database researchers and practitioners to further make their efforts on new database technologies.
来源: 评论