咨询与建议

限定检索结果

文献类型

  • 126 篇 会议
  • 26 篇 期刊文献

馆藏范围

  • 152 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 127 篇 工学
    • 104 篇 计算机科学与技术...
    • 93 篇 软件工程
    • 21 篇 信息与通信工程
    • 16 篇 控制科学与工程
    • 10 篇 农业工程
    • 9 篇 机械工程
    • 9 篇 光学工程
    • 8 篇 生物工程
    • 6 篇 仪器科学与技术
    • 6 篇 电子科学与技术(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 动力工程及工程热...
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 3 篇 网络空间安全
    • 2 篇 土木工程
  • 57 篇 理学
    • 46 篇 数学
    • 14 篇 物理学
    • 11 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 2 篇 化学
    • 2 篇 系统科学
  • 51 篇 管理学
    • 37 篇 图书情报与档案管...
    • 17 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 10 篇 农学
    • 10 篇 作物学
  • 7 篇 法学
    • 6 篇 社会学
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 医学
  • 1 篇 教育学

主题

  • 7 篇 semantics
  • 4 篇 support vector m...
  • 4 篇 forestry
  • 3 篇 international cr...
  • 3 篇 machine translat...
  • 3 篇 object detection
  • 3 篇 information tech...
  • 3 篇 data mining
  • 3 篇 computational li...
  • 3 篇 translation (lan...
  • 3 篇 decoding
  • 3 篇 information and ...
  • 3 篇 image classifica...
  • 3 篇 image recognitio...
  • 2 篇 image segmentati...
  • 2 篇 anomaly detectio...
  • 2 篇 knowledge manage...
  • 2 篇 translation proc...
  • 2 篇 face recognition
  • 2 篇 iterative method...

机构

  • 30 篇 key lab. of inte...
  • 19 篇 key lab. of inte...
  • 15 篇 key lab. of inte...
  • 12 篇 school of comput...
  • 9 篇 peng cheng labor...
  • 8 篇 graduate univers...
  • 8 篇 key laboratory o...
  • 7 篇 shanghai collabo...
  • 7 篇 school of cyber ...
  • 7 篇 shanghai key lab...
  • 7 篇 graduate univers...
  • 6 篇 institute of inf...
  • 6 篇 institute of dig...
  • 6 篇 key lab. of inte...
  • 6 篇 graduate school ...
  • 5 篇 university of ch...
  • 5 篇 school of cyber ...
  • 5 篇 shanghai collabo...
  • 5 篇 key lab. of inte...
  • 4 篇 school of comput...

作者

  • 23 篇 liu qun
  • 16 篇 huang qingming
  • 10 篇 xu qianqian
  • 10 篇 gao wen
  • 9 篇 zhuge hai
  • 7 篇 jiang shuqiang
  • 7 篇 liu yang
  • 7 篇 mi haitao
  • 7 篇 yang zhiyong
  • 7 篇 jiang yu-gang
  • 7 篇 cao xiaochun
  • 7 篇 huang liang
  • 6 篇 lin shouxun
  • 6 篇 chen xilin
  • 6 篇 xiong hao
  • 6 篇 tu zhaopeng
  • 5 篇 qun liu
  • 5 篇 jiang wenbin
  • 5 篇 wang zitai
  • 5 篇 wu zuxuan

语言

  • 144 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Key Lab. of Intelligent Info. Processing Institute of Computing Technology"
152 条 记 录,以下是11-20 订阅
排序:
Prototypical Residual Networks for Anomaly Detection and Localization
Prototypical Residual Networks for Anomaly Detection and Loc...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Hui Zhang Zuxuan Wu Zheng Wang Zhineng Chen Yu-Gang Jiang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai Collaborative Innovation Center of Intelligent Visual Computing School of Computer Science Zhejiang University of Technology
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies...
来源: 评论
Cross-Point Adversarial Attack Based on Feature Neighborhood Disruption Against Segment Anything Model
Cross-Point Adversarial Attack Based on Feature Neighborhood...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yan Jiang Guisheng Yin Ye Yuan Jingjing Chen Zhipeng Wei College of Computer Science and Technology Harbin Engineering University Harbin China Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University Shanghai China Shanghai Collaborative Innovation Center of Intelligent Visual Computing Shanghai China
Segment anything model (SAM) has received significant attention owing to its outstanding segmentation performance. However, it may still face security threats from adversarial examples. Since SAM interactively realize... 详细信息
来源: 评论
PoseAnimate: Zero-shot high fidelity pose controllab.e character animation
arXiv
收藏 引用
arXiv 2024年
作者: Zhu, Bingwen Wang, Fanyi Lu, Tianyi Liu, Peng Su, Jingwen Liu, Jinxiu Zhang, Yanhao Wu, Zuxuan Qi, Guo-Jun Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China OPPO AI Center South China University of Technology China Westlake University China
Image-to-video (I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity. However, existing approaches suffer from inconsistency of character appe... 详细信息
来源: 评论
DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Hui Wang, Zheng Wu, Zuxuan Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China School of Computer Science Zhejiang University of Technology China
Anomaly detection has garnered extensive applications in real industrial manufacturing due to its remarkable effectiveness and efficiency. However, previous generative-based models have been limited by suboptimal reco... 详细信息
来源: 评论
EventHallusion: Diagnosing Event Hallucinations in Video LLMs
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jiacheng Jiao, Yang Chen, Shaoxiang Zhao, Na Tan, Zhiyu Li, Hao Chen, Jingjing Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Singapore University of Technology and Design Singapore Shanghai Academy of Artificial Intelligence for Science China Meituan China
Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the ha... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques  38
Suppress Content Shift: Better Diffusion Features via Off-th...
收藏 引用
38th Conference on Neural info.mation processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features  38
Not All Diffusion Model Activations Have Been Evaluated as D...
收藏 引用
38th Conference on Neural info.mation processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan... 详细信息
来源: 评论
An SIQRS Model of Infectious Diseases with Time-Delayed Control Measures
An SIQRS Model of Infectious Diseases with Time-Delayed Cont...
收藏 引用
2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023
作者: Fan, Yufei Meng, Xueyu Qiao, Yanan Cui, Junying Ma, Junchao Cai, Zhiqiang School of Mechanical Engineering Northwestern Polytechnical University Department of Industrial Engineering Xi'an710072 China Northwestern Polytechnical University Min. of Indust. and Info. Technol. Key Lab. of Industrial Engineering and Intelligent Manufacturing Xi'an710072 China University of Fribourg Department of Physics Fribourg1700 Switzerland Institute of Finance and Economics Zhengzhou University of Science and Technology Zhengzhou450064 China School of Business and Research Center for Econophysics East China University of Science and Technology Shanghai200237 China
In this paper, we develop a modified SIQRS (susceptible-infected-quarantined-recovered-susceptible) compartmental model of infectious diseases based on the mean field theory of heterogeneous networks to analyze the ef... 详细信息
来源: 评论
Prototypical Residual Networks for Anomaly Detection and Localization
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Hui Wu, Zuxuan Wang, Zheng Chen, Zhineng Jiang, Yu-Gang Shanghai Key Lab of Intell. Info. Processing School of CS Fudan University China Shanghai Collaborative Innovation Center of Intelligent Visual Computing China School of Computer Science Zhejiang University of Technology China
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies... 详细信息
来源: 评论