咨询与建议

限定检索结果

文献类型

  • 1,222 篇 会议
  • 729 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,954 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,292 篇 工学
    • 982 篇 计算机科学与技术...
    • 867 篇 软件工程
    • 253 篇 信息与通信工程
    • 140 篇 生物工程
    • 136 篇 控制科学与工程
    • 112 篇 机械工程
    • 100 篇 光学工程
    • 79 篇 电气工程
    • 77 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 63 篇 化学工程与技术
    • 39 篇 仪器科学与技术
    • 27 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
    • 24 篇 交通运输工程
  • 672 篇 理学
    • 413 篇 数学
    • 169 篇 生物学
    • 156 篇 物理学
    • 111 篇 统计学(可授理学、...
    • 58 篇 化学
    • 35 篇 系统科学
  • 413 篇 管理学
    • 259 篇 图书情报与档案管...
    • 166 篇 管理科学与工程(可...
    • 53 篇 工商管理
  • 60 篇 医学
    • 47 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 33 篇 法学
    • 28 篇 社会学
  • 22 篇 经济学
  • 14 篇 教育学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 computer vision
  • 34 篇 object detection
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 432 篇 key laboratory o...
  • 300 篇 university of ch...
  • 83 篇 key laboratory o...
  • 67 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 48 篇 key laboratory o...
  • 48 篇 school of comput...
  • 46 篇 the key laborato...
  • 45 篇 key laboratory o...
  • 41 篇 chinese academy ...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 graduate univers...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 96 篇 xilin chen
  • 94 篇 shi zhongzhi
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 83 篇 huang qingming
  • 55 篇 xu qianqian
  • 45 篇 qing he
  • 41 篇 feng yang
  • 40 篇 he qing
  • 39 篇 yang zhiyong
  • 38 篇 li hua
  • 37 篇 wen gao
  • 35 篇 jiang shuqiang
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 liu yang
  • 32 篇 cao juan
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,721 篇 英文
  • 196 篇 其他
  • 41 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1954 条 记 录,以下是1321-1330 订阅
排序:
A granularity attribute reduction method based on binary discernibility matrix
收藏 引用
International Journal of Advancements in computing technology 2012年 第12期4卷 213-221页
作者: Chang, Tong Shifei, Ding Hong, Zhu Hongjie, Jia Jian, Wang School of Computer Science and Technology China University of Mining and Technology Xuzhou 221116 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Geomatics College Shandong University of Science and Technology Qingdao 266510 China
At present, most of the attribute reduction algorithms based on granularity are simply computing the granularity of knowledge. Repeated calculation will increase the time complexity. Binary discernibility matrix is us... 详细信息
来源: 评论
A support vector extraction method based on clustering membership
International Journal of Digital Content Technology and its ...
收藏 引用
International Journal of Digital Content technology and its Applications 2012年 第13期6卷 1-10页
作者: Qi, Bingjuan Ding, Shifei Huang, Huajuan Yu, Junzhao Wang, Jian School of Computer Science and Technology China University of Mining and Technology Xuzhou 221116 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science Beijing 100190 China Geomatics College Shandong University of Science and Technology Qingdao 266510 China
Traditional support vector machine has disadvantages of slow training speed and great time consumption when dealing with large-scale datasets. This paper proposes a support vector extraction method based on clustering... 详细信息
来源: 评论
Left-to-Right Tree-to-String Decoding with Prediction  12
Left-to-Right Tree-to-String Decoding with Prediction
收藏 引用
Conference on Empirical Methods in Natural Language processing
作者: Yang Feng Yang Liu Qun Liu Trevor Cohn Department of Computer Science The University of Sheffield Sheffield UK State Key Laboratory on Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology Department of Computer Sci. and Tech. Tsinghua University Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
Decoding algorithms for syntax based machine translation suffer from high computational complexity, a consequence of intersecting a language model with a context free grammar. Left-to-right decoding, which generates t... 详细信息
来源: 评论
STRUCTURED SPARSE LINEAR DISCRIMINANT ANALYSIS
STRUCTURED SPARSE LINEAR DISCRIMINANT ANALYSIS
收藏 引用
IEEE International Conference on Image processing
作者: Zhen Cui Shiguang Shan Haihong Zhang Shihong Lao Xilin Chen School of Computer Science and Technology Huaqiao University Xiamen China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China Omron Social Solutions Company Limited Kyoto Japan
Linear Discriminant Analysis (LDA) is an efficient image feature extraction technique by supervised dimensionality reduction. In this paper, we extend LDA to Structured Sparse LDA (SSLDA), where the projecting vectors... 详细信息
来源: 评论
Rough fuzzy subspaces based on subspaces in the vector space
Rough fuzzy subspaces based on subspaces in the vector space
收藏 引用
IEEE International Conference on Granular computing (GRC)
作者: Mingfen Wu Tao Chen School of Computer Science Wuyi University Guangdong China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science Wuyi University China
Rough set theory and fuzzy set theory are complementary generalizations of classical set *** paper concerns with rough sets,fuzzy sets and vector *** construct a rough fuzzy sets model based on a congruence of a vecto... 详细信息
来源: 评论
Practical privacy for value-added applications in vehicular ad hoc networks  5th
收藏 引用
5th International Conference on Internet and Distributed computing Systems, IDCS 2012
作者: Zhang, Lei Wu, Qianhong Qin, Bo Domingo-Ferrer, Josep Shanghai Key Laboratory of Trustworthy Computing Software Engineering Institute East China Normal University Shanghai China UNESCO Chair in Data Privacy Dept. of Comp. Eng. and Maths Universitat Rovira i Virgili TarragonaCatalonia Spain Key Lab. of Aerospace Information Security and Trusted Computing Ministry of Education Wuhan University School of Computer China Department of Maths School of Science Xi’an University of Technology China
Advances in mobile networking and information processing technologies have triggered vehicular ad hoc networks (VANETs) for traffic safety and value-added applications. Most efforts have been made to address the secur... 详细信息
来源: 评论
Twin support vector machines based on rough sets
International Journal of Digital Content Technology and its ...
收藏 引用
International Journal of Digital Content technology and its Applications 2012年 第20期6卷 493-500页
作者: Yu, Junzhao Ding, Shifei Jin, Fengxiang Huang, Huajuan Han, Youzhen School of Computer Science and Technology China University of Mining and Technology Xuzhou 221116 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science Beijing 100190 China Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia Beijing University of Posts and Telecommunications Beijing 100876 China Geomatics College Shandong University of Science and Technology Qingdao 266510 China
TWSVM(Twin Support Vector Machines) is based on the idea of GEPSVM (Proximal SVM based on Generalized Eigenvalues), which determines two nonparallel planes by solving two related SVM-type problems, so that its computi... 详细信息
来源: 评论
Image sets alignment for Video-Based Face Recognition
Image sets alignment for Video-Based Face Recognition
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zhen Cui Shiguang Shan Haihong Zhang Shihong Lao Xilin Chen School of Computer Science and Technology Huaqiao University Xiamen China Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China Omron Social Solutions Company Limited Kyoto Japan
Video-based Face Recognition (VFR) can be converted to the matching of two image sets containing face images captured from each video. For this purpose, we propose to bridge the two sets with a reference image set tha... 详细信息
来源: 评论
Activity recognition based on semantic spatial relation
Activity recognition based on semantic spatial relation
收藏 引用
International Conference on Pattern Recognition
作者: Lingxun Meng Laiyun Qing Peng Yang Jun Miao Xilin Chen Dimitris N. Metaxas University of the Chinese Academy of Sciences Beijing Beijing CN Computer Science Department Rutgers University Piscataway NJ USA Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China
We propose an approach to recognize group activities which involve several persons based on modeling the interactions between human bodies. Benefitted from the recent progress in pose estimation [1], we model the acti... 详细信息
来源: 评论
A Topic Similarity Model for Hierarchical Phrase-based Translation  12
A Topic Similarity Model for Hierarchical Phrase-based Trans...
收藏 引用
Annual meeting of the Association for Computational Linguistics
作者: Xinyan Xiao Deyi Xiong Min Zhang Qun Liu Shouxun Lin Key Lab. of Intelligent Info. Processing Institute of Computing Technology Chinese Academy of Sciences Human Language Technology Institute for Infocomm Research
Previous work using topic model for statistical machine translation (SMT) explore topic information at the word level. However, SMT has been advanced from word-based paradigm to phrase/rule-based paradigm. We therefor...
来源: 评论