咨询与建议

限定检索结果

文献类型

  • 1,226 篇 会议
  • 729 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,958 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,304 篇 工学
    • 996 篇 计算机科学与技术...
    • 874 篇 软件工程
    • 251 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 141 篇 生物工程
    • 111 篇 机械工程
    • 97 篇 光学工程
    • 79 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 73 篇 电子科学与技术(可...
    • 64 篇 化学工程与技术
    • 41 篇 仪器科学与技术
    • 28 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
  • 671 篇 理学
    • 408 篇 数学
    • 168 篇 生物学
    • 159 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 62 篇 化学
    • 36 篇 系统科学
  • 414 篇 管理学
    • 263 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 51 篇 工商管理
  • 62 篇 医学
    • 49 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 31 篇 法学
    • 26 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 12 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 439 篇 key laboratory o...
  • 300 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 98 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 43 篇 he qing
  • 41 篇 feng yang
  • 40 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 33 篇 jiang shuqiang
  • 33 篇 liu yang
  • 33 篇 cao juan
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,823 篇 英文
  • 90 篇 其他
  • 49 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1958 条 记 录,以下是461-470 订阅
排序:
Staggered Grid Scheme for the FFT-Based Methods
收藏 引用
Chinese Journal of Electronics 2019年 第5期28卷 1066-1072页
作者: XIE Jiaye KONG Weibin PANG Lili SONG Weiju HUANG Zhixiang WU Xianliang Industrial Center Nanjing Institute of Technology State Key Laboratory of Millimeter Waves College of Information Engineering Yancheng Institute of Technology Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University
A staggered grid scheme is proposed to reduce both the total memory requirement and the CPU time of generating the corrected near matrix in the FFTbased methods. Two sets of Cartesian grids are used to project the sou... 详细信息
来源: 评论
The Minority Matters: A Diversity-Promoting Collab.rative Metric Learning Algorithm
arXiv
收藏 引用
arXiv 2022年
作者: Bao, Shilong Xu, Qianqian Yang, Zhiyong He, Yuan Cao, Xiaochun Huang, Qingming State Key Laboratory of Information Security Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Alibaba Group China School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China Peng Cheng Laboratory China
Collab.rative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collab.rative Filtering. Following the convention of RS, existin... 详细信息
来源: 评论
High information Density and Low Coverage Data Storage in DNA with Efficient Channel Coding Schemes
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yi He, Xuan Nguyen, Tuan Thanh Song, Wentu Yakhini, Zohar Yaakobi, Eitan Pan, Linqiang Tang, Xiaohu Cai, Kui Information Coding and Transmission Key Lab of Sichuan Province Southwest Jiaotong University Sichuan Chengdu611756 China Cluster Singapore University of Technology and Design 487372 Singapore Faculty of Computer Science Technion - Israel Institute of Technology Haifa3200003 Israel School of Computer Science RUNI Herzliya4615200 Israel Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Hubei Wuhan430074 China
DNA-based data storage has been attracting significant attention due to its extremely high data storage density, low power consumption, and long duration compared to conventional data storage media. Despite the recent... 详细信息
来源: 评论
Adversarial Testing: A Novel On-Line Testing Method for Deep Learning Processors
Adversarial Testing: A Novel On-Line Testing Method for Deep...
收藏 引用
Asian Test Symposium (ATS)
作者: Wen Li Ying Wang Kaiwei Zou Huawei Li Xiaowei Li School of Computer and Information Technology Shanxi University Taiyuan Shanxi China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan Shanxi China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Department of Electronic Engineering Tsinghua University Beijing China
Deep neural networks have shown outstanding performance on complex tasks. Recently, various researches have been developed to pursue fast and energy-efficient deep learning accelerators. However, devices may suffer fr...
来源: 评论
Look one step ahead through first-order aggregation in reinforcement learning-based knowledge graph reasoning
收藏 引用
information Sciences 2025年 718卷
作者: Hao Wang Dandan Song Zhijing Wu YuHang Tian Jing Xu Laboratory of High-Volume Language Information Processing and Cloud Computing Beijing Lab of Intelligent Information Technology School of Computer Science and Technology Beijing Institute of Technology Beijing 100081 Beijing China
Multi-hop reasoning is an effective and interpretable approach for query answering, as it finds reasoning paths over knowledge graphs (KGs) to enhance interpretability. Recent studies have applied reinforcement learni... 详细信息
来源: 评论
MVC-VPR: Mutual Learning of Viewpoint Classification and Visual Place Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Gu, Qiwen Wang, Xufei Zhang, Fenglin Zhao, Junqiao Tao, Siyue Ye, Chen Feng, Tiantian Jiang, Changjun Department of Computer Science and Technology School of Electronics and Information Engineering Tongji University Shanghai China The Shanghai Research Institute for Intelligent Autonomous System Tongji University Shanghai China The MOE Key Lab of Embedded System and Service Computing Tongji University Shanghai China School of Surveying and Geo-Informatics Tongji University Shanghai China
Visual Place Recognition (VPR) aims to robustly identify locations by leveraging image retrieval based on descriptors encoded from environmental images. However, drastic appearance changes of images captured from diff... 详细信息
来源: 评论
Study on the influence of international oil price on domestic oil price by APT-ECM  4
Study on the influence of international oil price on domesti...
收藏 引用
4th International Conference on Physics, Mathematics and Statistics, ICPMS 2021
作者: Liu, Ziyuan Wang, Yu Xu, Shiwei Wang, Shengwei Li, Denghua Zhou, Han Agricultural Information Institute of Caas Beijing100081 China Beijing Agricultural Monitoring and Early Warning Engineering Technology Research Center Beijing100081 China Key Open Laboratory of Intelligent Agricultural Early Warning Technology and System of Caas Beijing100081 China Key Lab. of Agric. Information Service Technology of the Ministry of Agricultural and Rural Affairs Beijing100081 China
Based on the monthly data of soybean, soybean oil and soybean meal prices in China and the United States from 2006 to 2020, this paper applied the asymmetric error correction model (APT-ECM) to analyze the influence o... 详细信息
来源: 评论
Overview of the Tenth Dialog System technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Dual-Scale Enhanced and Cross-Generative Consistency Learning for Semi-Supervised Medical Image Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Gu, Yunqi Zhou, Tao Zhang, Yizhe Zhou, Yi He, Kelei Gong, Chen Zhu, Huafu PCA Lab The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Information Science and Technology Nanjing210094 China School of Computer Science and Engineering Southeast University Nanjing211189 China Medical School Nanjing University National Institute of Healthcare Data Science Nanjing210023 China Institute of High Performance Computing A*STAR Singapore
Medical image segmentation plays a crucial role in computer-aided diagnosis. However, existing methods heavily rely on fully supervised training, which requires a large amount of lab.led data with time-consuming pixel... 详细信息
来源: 评论
Revisiting Adversarial Robustness Distillation: Robust Soft lab.ls Make Student Better
Revisiting Adversarial Robustness Distillation: Robust Soft ...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Bojia Zi Shihao Zhao Xingjun Ma Yu-Gang Jiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan Univeristy Shanghai Collaborative Innovation Center on Intelligent Visual Computing School of Information Technology Deakin University Geelong Australia
Adversarial training is one effective approach for training robust deep neural networks against adversarial attacks. While being able to bring reliable robustness, adversarial training (AT) methods in general favor hi... 详细信息
来源: 评论