咨询与建议

限定检索结果

文献类型

  • 1,226 篇 会议
  • 729 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,958 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,304 篇 工学
    • 996 篇 计算机科学与技术...
    • 874 篇 软件工程
    • 251 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 141 篇 生物工程
    • 111 篇 机械工程
    • 97 篇 光学工程
    • 79 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 73 篇 电子科学与技术(可...
    • 64 篇 化学工程与技术
    • 41 篇 仪器科学与技术
    • 28 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
  • 671 篇 理学
    • 408 篇 数学
    • 168 篇 生物学
    • 159 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 62 篇 化学
    • 36 篇 系统科学
  • 414 篇 管理学
    • 263 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 51 篇 工商管理
  • 62 篇 医学
    • 49 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 31 篇 法学
    • 26 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 12 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 439 篇 key laboratory o...
  • 300 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 98 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 43 篇 he qing
  • 41 篇 feng yang
  • 40 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 33 篇 jiang shuqiang
  • 33 篇 liu yang
  • 33 篇 cao juan
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,823 篇 英文
  • 90 篇 其他
  • 49 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1958 条 记 录,以下是571-580 订阅
排序:
Interpretable Visual Reasoning via Probabilistic Formulation Under Natural Supervision  16th
Interpretable Visual Reasoning via Probabilistic Formulation...
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Han, Xinzhe Wang, Shuhui Su, Chi Zhang, Weigang Huang, Qingming Tian, Qi University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China Kingsoft Cloud Beijing China Harbin Institute of Technology Weihai China Peng Cheng Laboratory Shenzhen China Shenzhen University Shenzhen China
Visual reasoning is crucial for visual question answering (VQA). However, without lab.lled programs, implicit reasoning under natural supervision is still quite challenging and previous models are hard to interpret. I... 详细信息
来源: 评论
CoreDiff: Contextual Error-Modulated Generalized Diffusion Model for Low-Dose CT Denoising and Generalization
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Qi Li, Zilong Zhang, Junping Zhang, Yi Shan, Hongming The Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai201602 China The Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China School of Cyber Science and Engineering Sichuan University Sichuan Chengdu610065 China
Low-dose computed tomography (CT) images suffer from noise and artifacts due to photon starvation and electronic noise. Recently, some works have attempted to use diffusion models to address the over-smoothness and tr... 详细信息
来源: 评论
CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Cong, Runmin Lin, Qinwei Zhang, Chen Li, Chongyi Cao, Xiaochun Huang, Qingming Zhao, Yao Institute of Information Science Beijing Jiaotong University Beijing100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China School of Computer Science and Engineering Nanyang Technological University Singapore School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University 518107 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China
Focusing on the issue of how to effectively capture and utilize cross-modality information in RGB-D salient object detection (SOD) task, we present a convolutional neural network (CNN) model, named CIR-Net, based on t... 详细信息
来源: 评论
Lightweight Vision Model-based Multi-user Semantic Communication Systems
arXiv
收藏 引用
arXiv 2025年
作者: Jiang, Feibo Tu, Siwei Dong, Li Wang, Kezhi Yang, Kun Liu, Ruiqi Pan, Cunhua Wang, Jiangzhou Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China School of Information Science and Engineering Hunan Normal University Changsha410081 China School of Computer Science Hunan University of Technology and Business Changsha410205 China Xiangjiang Laboratory Changsha410205 China Department of Computer Science Brunel University London United Kingdom School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China Wireless and Computing Research Institute ZTE Corporation Beijing100029 China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China National Mobile Communications Research Laboratory Southeast University Nanjing China Purple Mountain Laboratories Nanjing China
Semantic Communication (SemCom) is a promising new paradigm for next-generation communication systems, emphasizing the transmission of core information, particularly in environments characterized by uncertainty, noise... 详细信息
来源: 评论
PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with Dual-Discriminators
arXiv
收藏 引用
arXiv 2023年
作者: Cong, Runmin Yang, Wenyu Zhang, Wei Li, Chongyi Guo, Chun-Le Huang, Qingming Kwong, Sam Institute of Information Science Beijing Jiaotong University Beijing100044 China School of Control Science and Engineering Shandong University Jinan250061 China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan250061 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China College of Computer Science Nankai University Tianjin300350 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China Department of Computer Science City University of Hong Kong Hong Kong City University of Hong Kong Shenzhen Research Institute Shenzhen51800 China
Due to the light absorption and scattering induced by the water medium, underwater images usually suffer from some degradation problems, such as low contrast, color distortion, and blurring details, which aggravate th... 详细信息
来源: 评论
Moiré cavity quantum electrodynamics
收藏 引用
Science Advances 2025年 第21期11卷 eadv8115页
作者: Wang, Yu-Tong Ye, Qi-Hang Yan, Jun-Yong Qiao, Yufei Liu, Yu-Xin Ye, Yong-Zheng Chen, Chen Cheng, Xiao-Tian Li, Chen-Hui Zhang, Zi-Jian Huang, Cheng-Nian Meng, Yun Zou, Kai Zhan, Wen-Kang Zhao, Chao Hu, Xiaolong Tee, Clarence Augustine T.H. Sha, Wei E.I. Huang, Zhixiang Liu, Huiyun Jin, Chao-Yuan Ying, Lei Liu, Feng State Key Laboratory of Extreme Photonics and Instrumentation College of Information Science and Electronic Engineering Zhejiang University Hangzhou310027 China School of Physics Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control Zhejiang University Hangzhou310027 China International Joint Innovation Center Zhejiang University Haining314400 China School of Precision Instrument and Optoelectronic Engineering Tianjin University Tianjin300072 China Key Laboratory of Optoelectronic Information Science and Technology Ministry of Education Tianjin300072 China Laboratory of Solid State Optoelectronics Information Technology Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Science Beijing101804 China College of Physics and Electrical Information Engineering Zhejiang Normal University Hangzhou310058 China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University Hefei230039 China Department of Electronic and Electrical Engineering University College London LondonWC1E 7JE United Kingdom ZJU-Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Zhejiang Hangzhou311200 China
Quantum emitters are a key component in photonic quantum technologies. Enhancing single-photon emission by engineering their photonic environment is essential for improving overall efficiency in quantum information pr... 详细信息
来源: 评论
Holistic Pose Graph: Modeling Geometric Structure among Objects in a Scene using Graph Inference for 3D Object Prediction
Holistic Pose Graph: Modeling Geometric Structure among Obje...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiwei Xiao Ruiping Wang Xilin Chen Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing Academy of Artificial Intelligence Beijing China
Due to the missing depth cues, it is essentially ambiguous to detect 3D objects from a single RGB image. Existing methods predict the 3D pose for each object independently or merely by combining local relationships wi... 详细信息
来源: 评论
Env-QA: A Video Question Answering Benchmark for Comprehensive Understanding of Dynamic Environments
Env-QA: A Video Question Answering Benchmark for Comprehensi...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Difei Gao Ruiping Wang Ziyi Bai Xilin Chen Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing Academy of Artificial Intelligence Beijing China
Visual understanding goes well beyond the study of images or videos on the web. To achieve complex tasks in volatile situations, the human can deeply understand the environment, quickly perceive events happening aroun... 详细信息
来源: 评论
Local Feature Enhancement Network for Set-based Face Recognition
Local Feature Enhancement Network for Set-based Face Recogni...
收藏 引用
International Conference on Automatic Face and Gesture Recognition
作者: Ziyi Bai Ruiping Wang Shiguang Shan Xilin Chen Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology Beijing CAS China University of Chinese Academy of Sciences Beijing China Beijing Academy of Artificial Intelligence Beijing China
Set-based Face Recognition is widely applied in scenarios like law enforcement and online media data management. Compared with face recognition using a single image, the faces in the set often contain abundant appeara... 详细信息
来源: 评论
WeChat AI & ICT's submission for DSTC9 interactive dialogue evaluation track
arXiv
收藏 引用
arXiv 2021年
作者: Li, Zekang Li, Zongjia Zhang, Jinchao Feng, Yang Zhou, Jie Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China WeChat AI Tencent Inc China School of EECS Peking University China University of Chinese Academy of Sciences China
We participate in the DSTC9 Interactive Dialogue Evaluation Track (Gunasekara et al. 2020) sub-task 1 (Knowledge Grounded Dialogue) and sub-task 2 (Interactive Dialogue). In sub-task 1, we employ a pre-trained languag... 详细信息
来源: 评论