咨询与建议

限定检索结果

文献类型

  • 1,221 篇 会议
  • 717 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,941 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,283 篇 工学
    • 975 篇 计算机科学与技术...
    • 861 篇 软件工程
    • 249 篇 信息与通信工程
    • 139 篇 生物工程
    • 134 篇 控制科学与工程
    • 112 篇 机械工程
    • 98 篇 光学工程
    • 77 篇 生物医学工程(可授...
    • 72 篇 电气工程
    • 72 篇 电子科学与技术(可...
    • 63 篇 化学工程与技术
    • 39 篇 仪器科学与技术
    • 27 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
  • 669 篇 理学
    • 411 篇 数学
    • 168 篇 生物学
    • 156 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 58 篇 化学
    • 35 篇 系统科学
  • 410 篇 管理学
    • 259 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 52 篇 工商管理
  • 60 篇 医学
    • 47 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 33 篇 法学
    • 28 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 13 篇 教育学
  • 10 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 431 篇 key laboratory o...
  • 298 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 51 篇 graduate univers...
  • 48 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 46 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 graduate univers...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 96 篇 xilin chen
  • 94 篇 shi zhongzhi
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 40 篇 he qing
  • 40 篇 feng yang
  • 38 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 34 篇 jiang shuqiang
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 liu yang
  • 32 篇 cao juan
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,759 篇 英文
  • 146 篇 其他
  • 40 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1941 条 记 录,以下是51-60 订阅
排序:
A Cross-Domain Ontology Semantic Representation Based on NCBI-BlueBERT Embedding
收藏 引用
Chinese Journal of Electronics 2022年 第5期31卷 860-869页
作者: ZHAO Lingling WANG Junjie WANG Chunyu GUO Maozu Faculty of Computing Harbin Institute of Technology Department of Medical Informatics School of Biomedical Engineering and InformaticsNanjing Medical University Beijing Key Laboratory of Intelligent Processing for Building Big Data School of Electrical and Information Engineering Beijing University of Civil Engineering and Architecture
A common but critical task in biological ontologies data analysis is to compare the difference between ontologies. There have been numerous ontologybased semantic-similarity measures proposed in specific ontology doma... 详细信息
来源: 评论
DO-FAM: Disentangled Non-Linear Latent Navigation For Facial Attribute Manipulation  48
DO-FAM: Disentangled Non-Linear Latent Navigation For Facial...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal processing, ICASSP 2023
作者: Yuan, Yifan Ma, Siteng Shan, Hongming Zhang, Junping Shanghai Key Lab of Intelligent Information Processing School of Computer Science China Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Shanghai China
Facial attribute manipulation (FAM) aims to edit the semantic attributes of facial images according to the user's requirements. Unfortunately, the majority of existing FAM methods struggle in meeting at least one ... 详细信息
来源: 评论
Learning to Localize Cross-Anatomy Landmarks in X-Ray Images with a Universal Model
收藏 引用
Biomedical Engineering Frontiers 2022年 第1期3卷 298-308页
作者: Heqin Zhu Qingsong Yao Li Xiao S.Kevin Zhou Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China Center for Medical Imaging RoboticsAnalytic Computing&Learning(MIRACLE)School of Biomedical Engineering&Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou 215123China
Objective and Impact *** this work,we develop a universal anatomical landmark detection model which learns once from multiple datasets corresponding to different anatomical *** with the conventional model trained on a... 详细信息
来源: 评论
Disentangled latent factors for muti-cause treatment effect estimation  6
Disentangled latent factors for muti-cause treatment effect ...
收藏 引用
2024 6th International Conference on Artificial Intelligence Technologies and Applications, ICAITA 2024
作者: Zhao, Zhuoyue Wang, Haotian Xu, Liyang Wang, Qian Tang, Yuhua Department of Intelligent Data Science National University of Defense Technology Changsha410073 China Intelligent Game and Decision Lab. Academy of Military Science Beijing100071 China Institute for Quantum Information State Key Laboratory of High-Performance Computing College of Computer Science and Technology National University of Defense Technology Changsha410073 China
Existing methods estimate treatment effects from observational data and assume that covariates are all confounders. However, observed covariates may not directly represent confounding variables that influence both tre...
来源: 评论
Beyond MLE: Convex Learning for Text Generation  37
Beyond MLE: Convex Learning for Text Generation
收藏 引用
37th Conference on Neural information processing Systems, NeurIPS 2023
作者: Shao, Chenze Ma, Zhengrui Zhang, Min Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China School of Future Science and Engineering Soochow University China
Maximum likelihood estimation (MLE) is a statistical method used to estimate the parameters of a probability distribution that best explain the observed data. In the context of text generation, MLE is often used to tr... 详细信息
来源: 评论
Domain-aware Node Representation Learning for Graph Out-of-Distribution Generalization
Domain-aware Node Representation Learning for Graph Out-of-D...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Yi Qiao Yang Liu Qing He Xiang Ao Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciencs Beijing China Institute of Intelligent Computing Technology Suzhou CAS
Graph Neural Networks (GNNs) have demonstrated impressive success across diverse fields when data satisfies in-distribution (ID) assumption. Nevertheless, GNN performance significantly declines in cases of distributio... 详细信息
来源: 评论
Imagine Before Go: Self-Supervised Generative Map for Object Goal Navigation
Imagine Before Go: Self-Supervised Generative Map for Object...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Sixian Zhang Xinyao Yu Xinhang Song Xiaohan Wang Shuqiang Jiang Key Lab of Intelligent Information Processing Laboratory of the Chinese Academy of Sciences (CAS) Institute of Computing Technology Beijing University of Chinese Academy of Sciences Beijing Institute of Intelligent Computing Technology Suzhou CAS
The Object Goal navigation (ObjectNav) task requires the agent to navigate to a specified target in an unseen environment. Since the environment layout is unknown, the agent needs to infer the unknown contextual objec... 详细信息
来源: 评论
Viterbi Decoding of Directed Acyclic Transformer for Non-Autoregressive Machine Translation
Viterbi Decoding of Directed Acyclic Transformer for Non-Aut...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Shao, Chenze Ma, Zhengrui Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Non-autoregressive models achieve significant decoding speedup in neural machine translation but lack the ability to capture sequential dependency. Directed Acyclic Transformer (DA-Transformer) was recently proposed t... 详细信息
来源: 评论
Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer  29
Improving Fake News Detection of Influential Domain via Doma...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Nan, Qiong Wang, Danding Zhu, Yongchun Sheng, Qiang Shi, Yuhui Cao, Juan Li, Jintao Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
Both real and fake news in various domains, such as politics, health, and entertainment are spread via online social media every day, necessitating fake news detection for multiple domains. Among them, fake news in sp... 详细信息
来源: 评论
Speculative decoding with CTC-based draft model for LLM inference acceleration  24
Speculative decoding with CTC-based draft model for LLM infe...
收藏 引用
Proceedings of the 38th International Conference on Neural information processing Systems
作者: Zhuofan Wen Shangtong Gui Yang Feng Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences and State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences and Key Laboratory of Al Safety Chinese Academy of Sciences and University of Chinese Academy of Sciences Beijing China
Inference acceleration of large language models (LLMs) has been put forward in many application scenarios and speculative decoding has shown its advantage in addressing inference acceleration. Speculative decoding usu...
来源: 评论