咨询与建议

限定检索结果

文献类型

  • 1,226 篇 会议
  • 729 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,958 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,304 篇 工学
    • 996 篇 计算机科学与技术...
    • 874 篇 软件工程
    • 251 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 141 篇 生物工程
    • 111 篇 机械工程
    • 97 篇 光学工程
    • 79 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 73 篇 电子科学与技术(可...
    • 64 篇 化学工程与技术
    • 41 篇 仪器科学与技术
    • 28 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
  • 671 篇 理学
    • 408 篇 数学
    • 168 篇 生物学
    • 159 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 62 篇 化学
    • 36 篇 系统科学
  • 414 篇 管理学
    • 263 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 51 篇 工商管理
  • 62 篇 医学
    • 49 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 31 篇 法学
    • 26 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 12 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 439 篇 key laboratory o...
  • 300 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 98 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 43 篇 he qing
  • 41 篇 feng yang
  • 40 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 33 篇 jiang shuqiang
  • 33 篇 liu yang
  • 33 篇 cao juan
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,823 篇 英文
  • 90 篇 其他
  • 49 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1958 条 记 录,以下是641-650 订阅
排序:
Bayesian dual neural networks for recommendation
收藏 引用
Frontiers of Computer Science 2019年 第6期13卷 1255-1265页
作者: Jia HE Fuzhen ZHUANG Yanchi LIU Qing HE Fen LIN Key Lab of Intelligent Information Processing of Chinese Academy of Sciences Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China Rutgers University Newark 07102USA Search Product Center WeChat Search Application DepartmentTencentBeijing 100080China
Most traditional collab.rative filtering(CF)methods only use the user-item rating matrix to make recommendations,which usually suffer from cold-start and sparsity *** address these problems,on the one hand,some CF met... 详细信息
来源: 评论
VideoLT: Large-scale Long-tailed Video Recognition
VideoLT: Large-scale Long-tailed Video Recognition
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xing Zhang Zuxuan Wu Zejia Weng Huazhu Fu Jingjing Chen Yu-Gang Jiang Larry Davis Academy for Engineering and Technology Fudan University Shanghai Key Lab of Intel. Info. Processing School of Computer Science Fudan University Shanghai Collaborative Innovation Center on Intelligent Visual Computing Inception Institute of Artificial Intelligence University of Maryland
lab.l distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant lab.ls. While long-tailed recognition has been extensively studied for image classification task... 详细信息
来源: 评论
Learning to Undersampling for Class Imbalanced Credit Risk Forecasting
Learning to Undersampling for Class Imbalanced Credit Risk F...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Jianfeng Chi Guanxiong Zeng Qiwei Zhong Ting Liang Jinghua Feng Xiang Ao Jiayu Tang Alibaba Group CN Key Lab of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing CN University of Chinese Academy of Sciences Beijing CN
Credit risk forecasting generally aims to evaluate the default probability of users in financial service. It is usually regarded as a binary classification problem, which suffers from the severe class-imbalance proble... 详细信息
来源: 评论
VideoLT: Large-scale long-tailed video recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Xing Wu, Zuxuan Weng, Zejia Fu, Huazhu Chen, Jingjing Jiang, Yu-Gang Davis, Larry Academy for Engineering and Technology Fudan University Shanghai Key Lab of Intel. Info. Processing School of Computer Science Fudan University Shanghai Collaborative Innovation Center on Intelligent Visual Computing Inception Institute of Artificial Intelligence University of Maryland
lab.l distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant lab.ls. While long-tailed recognition has been extensively studied for image classification task... 详细信息
来源: 评论
Interpreting Object-level Foundation Models via Visual Precision Search
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Ruoyu Liang, Siyuan Li, Jingzhi Liu, Shiming Li, Maosen Huang, Zhen Zhang, Hua Cao, Xiaochun Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China School of Computing NUS Singapore RAMS Lab Huawei Technologies Co. Ltd. China IAS BU Huawei Technologies Co. Ltd. China College of Computer NUDT China Key Lab. of Edu. Inf. for Nationalities YNNU Ministry of Education Kunming China School of Cyber Science and Technology Sun Yat-sen University Shenzhen Campus Shenzhen518107 China
Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models’ decis... 详细信息
来源: 评论
Hard instance learning for quantum adiabatic prime factorization
arXiv
收藏 引用
arXiv 2021年
作者: Lin, Jian Zhang, Zhengfeng Zhang, Junping Li, Xiaopeng State Key Laboratory of Surface Physics Institute of Nanoelectronics and Quantum Computing Department of Physics Fudan University Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Shanghai Qi Zhi Institute AI Tower Xuhui District Shanghai200232 China
Prime factorization is a difficult problem with classical computing, whose exponential hardness is the foundation of Rivest-Shamir-Adleman (RSA) cryptography. With programmable quantum devices, adiabatic quantum compu... 详细信息
来源: 评论
Accurate Latent Factor Analysis via Particle Swarm Optimizers
Accurate Latent Factor Analysis via Particle Swarm Optimizer...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Jia Chen Xin Luo MengChu Zhou School of Cyber Science and Technology Beihang University Beijing China Chongqing Key Lab. of Big Data and Intelligent Computing and the Chongqing Engineering Research Center of Big Data Application for Smart Cities Chongqing Institute of Green and Intelligent Technology Chongqing School University of Chinese Academy of Sciences Chongqing China New Jersey Institute of Technology Newark NJ USA
A stochastic-gradient-descent-based Latent Factor Analysis (LFA) model is highly efficient in representative learning of a High-Dimensional and Sparse (HiDS) matrix. Its learning rate adaptation is vital in ensuring i... 详细信息
来源: 评论
CDL: Curriculum Dual Learning for Emotion-Controllab.e Response Generation
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Lei Feng, Yang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China
Emotion-controllab.e response generation is an attractive and valuable task that aims to make open-domain conversations more empathetic and engaging. Existing methods mainly enhance the emotion expression by adding re... 详细信息
来源: 评论
DMNER: Biomedical Named Entity Recognition by Detection and Matching
arXiv
收藏 引用
arXiv 2023年
作者: Bian, Junyi Jiang, Rongze Zhai, Weiqi Huang, Tianyang Zhou, Hong Zhu, Shanfeng School of Computer Science Fudan University Shanghai200433 China Atypon Systems LLC United Kingdom Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Ministry of Education Shanghai200433 China MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Zhangjiang Fudan International Innovation Center Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai200433 China
Biomedical named entity recognition (BNER) serves as the foundation for numerous biomedical text mining tasks. Unlike general NER, BNER require a comprehensive grasp of the domain, and incorporating external knowledge... 详细信息
来源: 评论
ISIA food-500: A dataset for large-scale food recognition via stacked global-local attention network
arXiv
收藏 引用
arXiv 2020年
作者: Min, Weiqing Liu, Linhu Wang, Zhiling Luo, Zhengdong Wei, Xiaoming Wei, Xiaolin Jiang, Shuqiang Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China Meituan-Dianping Group China
Food recognition has received more and more attention in the multimedia community for its various real-world applications, such as diet management and self-service restaurants. A large-scale ontology of food images is... 详细信息
来源: 评论