咨询与建议

限定检索结果

文献类型

  • 1,226 篇 会议
  • 729 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,958 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,304 篇 工学
    • 996 篇 计算机科学与技术...
    • 874 篇 软件工程
    • 251 篇 信息与通信工程
    • 145 篇 控制科学与工程
    • 141 篇 生物工程
    • 111 篇 机械工程
    • 97 篇 光学工程
    • 79 篇 生物医学工程(可授...
    • 74 篇 电气工程
    • 73 篇 电子科学与技术(可...
    • 64 篇 化学工程与技术
    • 41 篇 仪器科学与技术
    • 28 篇 建筑学
    • 26 篇 农业工程
    • 25 篇 材料科学与工程(可...
    • 24 篇 动力工程及工程热...
  • 671 篇 理学
    • 408 篇 数学
    • 168 篇 生物学
    • 159 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 62 篇 化学
    • 36 篇 系统科学
  • 414 篇 管理学
    • 263 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 51 篇 工商管理
  • 62 篇 医学
    • 49 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 31 篇 法学
    • 26 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 12 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 439 篇 key laboratory o...
  • 300 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 52 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 49 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 98 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 43 篇 he qing
  • 41 篇 feng yang
  • 40 篇 li hua
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 33 篇 jiang shuqiang
  • 33 篇 liu yang
  • 33 篇 cao juan
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,823 篇 英文
  • 90 篇 其他
  • 49 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1958 条 记 录,以下是731-740 订阅
排序:
3R: Word and Phoneme Edition based Data Augmentation for Lexical Punctuation Prediction
3R: Word and Phoneme Edition based Data Augmentation for Lex...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Aihua Zheng Naipeng Ye Xiao Wang Xiao Song Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Hefei China Peking University Shenzhen Institute Shenzhen China Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei China
Existing Lexical Punctuation Prediction methods are mainly trained on the standard clean data while losing the generalization in practical automatic speech recognition (ASR) system with ubiquitous transcription errors... 详细信息
来源: 评论
DU-GAN: Generative adversarial networks with dual-domain U-net based discriminators for low-dose CT denoising
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Zhizhong Zhang, Junping Zhang, Yi Shan, Hongming The Shanghai Key Lab of Intelligent Information Processing The School of Computer Science Fudan University Shanghai200433 China The College of Computer Science Sichuan University Chengdu610065 China The Institute of Science and Technology for Brain-Inspired Intelligence MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai201210 China
Low-dose computed tomography (LDCT) has drawn major attention in the medical imaging field due to the potential health risks of CT-associated X-ray radiation to patients. Reducing the radiation dose, however, decrease... 详细信息
来源: 评论
technology Roadmap for Flexible Sensors
收藏 引用
ACS NANO 2023年 第6期17卷 5211-5295页
作者: Luo, Yifei Abidian, Mohammad Reza Ahn, Jong-Hyun Akinwande, Deji Andrews, Anne M. Antonietti, Markus Bao, Zhenan Berggren, Magnus Berkey, Christopher A. Bettinger, Christopher John Chen, Jun Chen, Peng Cheng, Wenlong Cheng, Xu Choi, Seon-Jin Chortos, Alex Dagdeviren, Canan Dauskardt, Reinhold H. Di, Chong-an Dickey, Michael D. Duan, Xiangfeng Facchetti, Antonio Fan, Zhiyong Fang, Yin Feng, Jianyou Feng, Xue Gao, Huajian Gao, Wei Gong, Xiwen Guo, Chuan Fei Guo, Xiaojun Hartel, Martin C. He, Zihan Ho, John S. Hu, Youfan Huang, Qiyao Huang, Yu Huo, Fengwei Hussain, Muhammad M. Javey, Ali Jeong, Unyong Jiang, Chen Jiang, Xingyu Kang, Jiheong Karnaushenko, Daniil Khademhosseini, Ali Kim, Dae-Hyeong Kim, Il-Doo Kireev, Dmitry Kong, Lingxuan Lee, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Li, Fengyu Li, Jinxing Liang, Cuiyuan Lim, Chwee Teck Lin, Yuanjing Lipomi, Darren J. Liu, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Loh, Xian Jun Lu, Nanshu Lv, Zhisheng Magdassi, Shlomo Malliaras, George G. Matsuhisa, Naoji Nathan, Arokia Niu, Simiao Pan, Jieming Pang, Changhyun Pei, Qibing Peng, Huisheng Qi, Dianpeng Ren, Huaying Rogers, John A. Rowe, Aaron Schmidt, Oliver G. Sekitani, Tsuyoshi Seo, Dae-Gyo Shen, Guozhen Sheng, Xing Shi, Qiongfeng Someya, Takao Song, Yanlin Stavrinidou, Eleni Su, Meng Sun, Xuemei Takei, Kuniharu Tao, Xiao-Ming Tee, Benjamin C. K. Thean, Aaron Voon-Yew Trung, Tran Quang Wan, Changjin Wang, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Weiss, Paul S. Wen, Hanqi Xu, Sheng Xu, Tailin Yan, Hongping Yan, Xuzhou Yang, Hui Yang, Le Yang, Shuaijian Yin, Lan Yu, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Zamburg, Evgeny Zhang, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhao, Siyuan Zhao, Xuanhe Zheng, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zhou, Tao Zhu, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zou, Guijin Chen, Xiaodong 08-03 Innovis Singapore 138634 Republic of Singapore Innovative Centre for Flexible Devices (iFLEX) School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore Department of Biomedical Engineering University of Houston Houston Texas 77024 United States School of Electrical and Electronic Engineering Yonsei University Seoul 03722 Republic of Korea Department of Electrical and Computer Engineering The University of Texas at Austin Austin Texas 78712 United States Microelectronics Research Center The University of Texas at Austin Austin Texas 78758 United States Department of Chemistry and Biochemistry California NanoSystems Institute and Department of Psychiatry and Biobehavioral Sciences Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology University of California Los Angeles Los Angeles California 90095 United States Colloid Chemistry Department Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany Department of Chemical Engineering Stanford University Stanford California 94305 United States Laboratory of Organic Electronics Department of Science and Technology Campus Norrköping Linköping University 83 Linköping Sweden Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC) SE-100 44 Stockholm Sweden Department of Materials Science and Engineering Stanford University Stanford California 94301 United States Department of Biomedical Engineering and Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh Pennsylvania 15213 United States Department of Bioengineering University of California Los Angeles Los Angeles California 90095 United States School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University Singapore 637457 Singapore Nanobionics Group Department of Chemical and Biological Engineering Monash University Clayton Australia 3800 Monash
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitati... 详细信息
来源: 评论
Click-iG: Simultaneous Enrichment and Profiling of Intact N-linked, O-GalNAc, and O-GlcNAcylated Glycopeptides
收藏 引用
Angewandte Chemie 2023年 第36期135卷
作者: Dr. Jialin Liu Dr. Bo Cheng Dr. Xinqi Fan Xinyue Zhou Jiankun Wang Dr. Wen Zhou Hengyu Li Dr. Wenfeng Zeng Prof. Pengyuan Yang Prof. Xing Chen College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking-Tsinghua Center for Life Sciences Synthetic and Functional Biomolecules Center and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China Institute of Biomedical Sciences and Department of Chemistry Fudan University Shanghai 200433 China Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) and Institute of Computing Technology CAS Beijing 100190 China Deseased
Proteins are ubiquitously modified with glycans of varied chemical structures through distinct glycosidic linkages, making the landscape of protein glycosylation challenging to map. Profiling of intact glycopeptides w... 详细信息
来源: 评论
DeepACC:Automate Chromosome Classification based on Metaphase Images using Deep Learning Framework Fused with Prior Knowledge
arXiv
收藏 引用
arXiv 2020年
作者: Luo, Chunlong Yu, Tianqi Luo, Yufan Wang, Manqing Yu, Fuhai Li, Yinhao Tian, Chan Qiao, Jie Xiao, Li Key Laboratory of Intelligent Information Processing Advanced Computer Research Center Institute of Computing Technology Chinese Academy of Sciences Beijing China Peking University Third Hospital Beijing China School of Computer and Control Engineering University of Chinese Academy of China
Chromosome classification is an important but difficult and tedious task in karyotyping. Previous methods only classify manually segmented single chromosome, which is far from clinical practice. In this work, we propo... 详细信息
来源: 评论
AutoHR: A strong end-To-end baseline for remote heart rate measurement with neural searching
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Zitong Li, Xiaobai Niu, Xuesong Shi, Jingang Zhao, Guoying Center for Machine Vision and Signal Analysis University of Oulu Oulu90014 Finland Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications (e.g., remote healthcare). Existing end-To-end rPPG and heart rate (HR) measur... 详细信息
来源: 评论
Cloud-based data-sharing scheme using verifiable and CCA-secure re-encryption from indistinguishability obfuscation  14th
Cloud-based data-sharing scheme using verifiable and CCA-sec...
收藏 引用
14th International Conference on information Security and Cryptology, Inscrypt 2018
作者: Zhang, Mingwu Jiang, Yan Shen, Hua Li, Bingbing Susilo, Willy School of Computers Hubei University of Technology Wuhan China Hubei Key Laboratory of Intelligent Geo-Information Processing China University of Geosciences Wuhan China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Institute of Cybersecurity and Cryptology School of Computing and Information Technology University of Wollongong Wollongong Australia
A cloud-based re-encryption scheme allows a semi-trusted cloud proxy to convert a ciphertext under delegator’s public-key into a ciphertext of delegatee’s. However, for an untrusted cloud proxy, as the re-encryption... 详细信息
来源: 评论
Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax
Overcoming Classifier Imbalance for Long-Tail Object Detecti...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yu Li Tao Wang Bingyi Kang Sheng Tang Chunfeng Wang Jintao Li Jiashi Feng Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Department of Electrical and Computer Engineering National University of Singapore Singapore Institute of Data Science National University of Singapore Singapore
Solving long-tail large vocabulary object detection with deep learning based models is a challenging and demanding task, which is however under-explored. In this work, we provide the first systematic analysis on the u... 详细信息
来源: 评论
Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yu Wang, Tao Kang, Bingyi Tang, Sheng Wang, Chunfeng Li, Jintao Feng, Jiashi Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Department of Electrical and Computer Engineering National University of Singapore Singapore Institute of Data Science National University of Singapore Singapore
Solving long-tail large vocabulary object detection with deep learning based models is a challenging and demanding task, which is however under-explored. In this work, we provide the first systematic analysis on the u... 详细信息
来源: 评论
Network Parameter Generation for One-Shot Object Detection
Network Parameter Generation for One-Shot Object Detection
收藏 引用
2019 IEEE International Conference on Unmanned Systems, ICUS 2019
作者: Wang, Kang Zhao, Jiajia Wang, Yang Zhou, Shuigeng Fudan University Shanghai Key Lab of Intelligent Information Processing School of Computer Science Shanghai200433 China Beijing Electro-Mechanical Engineer Institute Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory Beijing China Nanchang University School of Information Engineering 330031 China
Recent object detection models have achieved satisfactory performance by deep learning with large-scale annotated datasets. However, these models often perform poorly when the training examples are not sufficient enou... 详细信息
来源: 评论