咨询与建议

限定检索结果

文献类型

  • 1,221 篇 会议
  • 728 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,952 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,298 篇 工学
    • 989 篇 计算机科学与技术...
    • 872 篇 软件工程
    • 250 篇 信息与通信工程
    • 139 篇 生物工程
    • 136 篇 控制科学与工程
    • 112 篇 机械工程
    • 99 篇 光学工程
    • 77 篇 生物医学工程(可授...
    • 75 篇 电气工程
    • 74 篇 电子科学与技术(可...
    • 64 篇 化学工程与技术
    • 41 篇 仪器科学与技术
    • 29 篇 建筑学
    • 26 篇 材料科学与工程(可...
    • 26 篇 农业工程
    • 24 篇 动力工程及工程热...
  • 671 篇 理学
    • 410 篇 数学
    • 168 篇 生物学
    • 159 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 59 篇 化学
    • 35 篇 系统科学
  • 416 篇 管理学
    • 263 篇 图书情报与档案管...
    • 165 篇 管理科学与工程(可...
    • 52 篇 工商管理
  • 60 篇 医学
    • 47 篇 临床医学
    • 38 篇 基础医学(可授医学...
  • 35 篇 农学
    • 31 篇 作物学
  • 33 篇 法学
    • 28 篇 社会学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 13 篇 教育学
  • 11 篇 艺术学
  • 9 篇 哲学
  • 4 篇 文学
  • 1 篇 军事学

主题

  • 95 篇 semantics
  • 90 篇 feature extracti...
  • 71 篇 training
  • 71 篇 information proc...
  • 57 篇 laboratories
  • 52 篇 computers
  • 48 篇 face recognition
  • 42 篇 visualization
  • 42 篇 humans
  • 40 篇 computational mo...
  • 36 篇 data mining
  • 35 篇 object detection
  • 35 篇 computer vision
  • 34 篇 machine learning
  • 33 篇 image segmentati...
  • 31 篇 decoding
  • 30 篇 deep learning
  • 29 篇 support vector m...
  • 28 篇 robustness
  • 27 篇 data models

机构

  • 435 篇 key laboratory o...
  • 297 篇 university of ch...
  • 83 篇 key laboratory o...
  • 66 篇 peng cheng labor...
  • 63 篇 key lab of intel...
  • 51 篇 key lab of intel...
  • 50 篇 graduate univers...
  • 48 篇 key laboratory o...
  • 46 篇 key laboratory o...
  • 45 篇 the key laborato...
  • 44 篇 school of comput...
  • 41 篇 chinese academy ...
  • 37 篇 graduate univers...
  • 35 篇 institute of sci...
  • 35 篇 school of cyber ...
  • 32 篇 school of comput...
  • 30 篇 key lab. of inte...
  • 29 篇 shanghai key lab...
  • 29 篇 institute of dig...
  • 27 篇 national enginee...

作者

  • 100 篇 zhongzhi shi
  • 98 篇 shi zhongzhi
  • 96 篇 xilin chen
  • 87 篇 shiguang shan
  • 85 篇 liu qun
  • 79 篇 huang qingming
  • 51 篇 xu qianqian
  • 45 篇 qing he
  • 41 篇 he qing
  • 40 篇 li hua
  • 40 篇 feng yang
  • 37 篇 wen gao
  • 35 篇 yang zhiyong
  • 34 篇 jiang shuqiang
  • 33 篇 liu yang
  • 33 篇 cao juan
  • 33 篇 qingming huang
  • 33 篇 zhuge hai
  • 32 篇 cao xiaochun
  • 30 篇 zhuang fuzhen

语言

  • 1,831 篇 英文
  • 75 篇 其他
  • 50 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing Institute of Computing Technology"
1952 条 记 录,以下是861-870 订阅
排序:
Harmonized-Multinational qEEG norms (HarMNqEEG)
收藏 引用
NEUROIMAGE 2022年 256卷 119190-119190页
作者: Li, Min Wang, Ying Lopez-Naranjo, Carlos Hu, Shiang Reyes, Ronaldo Cesar Garcia Paz-Linares, Deirel Areces-Gonzalez, Ariosky Hamid, Aini Ismafairus Abd Evans, Alan C. Savostyanov, Alexander N. Calzada-Reyes, Ana Villringer, Arno Tobon-Quintero, Carlos A. Garcia-Agustin, Daysi Yao, Dezhong Dong, Li Aubert-Vazquez, Eduardo Reza, Faruque Razzaq, Fuleah Abdul Omar, Hazim Abdullah, Jafri Malin Galler, Janina R. Ochoa-Gomez, John F. Prichep, Leslie S. Galan-Garcia, Lidice Morales-Chacon, Lilia Valdes-Sosa, Mitchell J. Trondle, Marius Zulkifly, Mohd Faizal Mohd Rahman, Muhammad Riddha Bin Abdul Milakhina, Natalya S. Langer, Nicolas Rudych, Pavel Koenig, Thomas Virues-Alba, Trinidad A. Lei, Xu Bringas-Vega, Maria L. Bosch-Bayard, Jorge F. Valdes-Sosa, Pedro Antonio [a]The Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China [b]Cuban Center for Neurocience La Habana Cuba [c]McGill Centre for Integrative Neuroscience Ludmer Centre for Neuroinformatics and Mental Health Montreal Neurological Institute Canada [d]Department of Neurosciences School of Medical Sciences Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [e]Brain and Behaviour Cluster School of Medical Sciences Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [f]Hospital Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [g]Humanitarian Institute Novosibirsk State University Novosibirsk 630090 Russia [h]Laboratory of Psychophysiology of Individual Differences Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine Novosibirsk 630117 Russia [i]Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences Novosibirsk 630090 Russia [j]University of Pinar del Río “Hermanos Saiz Montes de Oca” Pinar del Río Cuba [k]Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany [l]Department of Cognitive Neurology University Hospital Leipzig Leipzig Germany [m]Center for Stroke Research Charité-Universitätsmedizin Berlin Berlin Germany [n]Grupo Neuropsicología y Conducta - GRUNECO Faculty of Medicine Universidad de Antioquia Colombia [o]Research Department Institución Prestadora de Servicios de Salud IPS Universitaria Colombia [p]The Cuban center aging longevity and health Havana Cuba [q]Research Unit of NeuroInformation Chinese Academy of Medical Sciences Chengdu 2019RU035 China [r]School of Electrical Engineering Zhengzhou University Zhengzhou 4500
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral informat... 详细信息
来源: 评论
Understanding metric-related pitfalls in image analysis validation
arXiv
收藏 引用
arXiv 2023年
作者: Reinke, Annika Tizabi, Minu D. Baumgartner, Michael Eisenmann, Matthias Heckmann-Nötzel, Doreen Kavur, A. Emre Rädsch, Tim Sudre, Carole H. Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Benis, Arriel Blaschko, Matthew B. Buettner, Florian Cardoso, M. Jorge Cheplygina, Veronika Chen, Jianxu Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Farahani, keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hashimoto, Daniel A. Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kenngott, Hannes Kleesiek, Jens Kofler, Florian Kooi, Thijs Kopp-Schneider, Annette Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Petersen, Jens Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Riegler, Michael A. Rieke, Nicola Saez-Rodriguez, Julio Sánchez, Clara I. Shetty, Shravya Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. van Calster, Ben Varoquaux, Gaël Yaniv, Ziv R. Jäger, Paul F. Maier-Hein, Lena Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Intelligent Medical Systems Germany NCT Heidelberg A Partnership Between DKFZ University Medical Center Heidelberg Germany Heidelberg Division of Medical Image Computing Germany Heidelberg Division of Intelligent Medical Systems Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montreal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Leuven Belgium partner site Frankfurt/Mainz a partnership between DKFZ and UCT Frankfurt Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany and Frankfurt Cancer Insititute Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for Statistics in Medicine University of Oxford Oxford United Kingdom Center for Biomedical In
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that parti... 详细信息
来源: 评论
Corrigendum to “Discovering and learning sensational episodes of news events” [information Systems 78 (2018) 68–80]
收藏 引用
information Systems 2019年 81卷 178-178页
作者: Xiang Ao Ping Luo Chengkai Li Fuzhen Zhuang Qing He Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China University of Texas at Arlington USA
来源: 评论
NTIRE 2020 Challenge on Image and Video Deblurring
arXiv
收藏 引用
arXiv 2020年
作者: Seungjun, Nah Sanghyun, Son Radu, Timofte Kyoung Mu, Lee Tseng, Yu Xu, Yu-Syuan Chiang, Cheng-Ming Tsai, Yi-Min Brehm, Stephan Scherer, Sebastian Xu, Dejia Chu, Yihao Sun, Qingyan Jiang, Jiaqin Duan, Lunhao Yao, Jian Purohit, Kuldeep Suin, Maitreya Rajagopalan, A.N. Ito, Yuichi Hrishikesh, P.S. Puthussery, Densen Akhil, K.A. Jiji, C.V. Kim, Guisik Deepa, P.L. Xiong, Zhiwei Huang, Jie Liu, Dong Kim, Sangmin Nam, Hyungjoon Kim, Jisu Jeong, Jechang Huang, Shihua Fan, Yuchen Yu, Jiahui Yu, Haichao Huang, Thomas S. Zhou, Ya Li, Xin Liu, Sen Chen, Zhibo Dutta, Saikat Das, Sourya Dipta Garg, Shivam Sprague, Daniel Patel, Bhrij Huck, Thomas Department of ECE ASRI SNU Korea Republic of Computer Vision Lab ETH Zurich Switzerland MediaTek Inc University of Augsburg Chair for Multimedia Computing and Computer Vision Lab Germany Peking University China Beijing University of Posts and Telecommunications China Beijing Jiaotong University China Wuhan University China Indian Institute of Technology Madras India Vermilion College of Engineering Trivandrum India CVML Chung-Ang University Korea Republic of APJ Abdul Kalam Technological University India University of Science and Technology of China China Image Communication Signal Processing Laboratory Hanyang University Korea Republic of Southern University of Science and Technology China University of Illinois at Urbana-Champaign United States CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System University of Science and Technology of China China IIT Madra Jadavpur University India University of Texas Austin United States Duke University Computer Science Department United States
Motion blur is one of the most common degradation artifacts in dynamic scene photography. This paper reviews the NTIRE 2020 Challenge on Image and Video Deblurring. In this challenge, we present the evaluation results... 详细信息
来源: 评论
Less but Better: Generalization enhancement of ordinal embedding via distributional margin
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Ke Xu, Qianqian Yang, Zhiyong Cao, Xiaochun State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security University of Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences
In the absence of prior knowledge, ordinal embedding methods obtain new representation for items in a low-dimensional Euclidean space via a set of quadruple-wise comparisons. These ordinal comparisons often come from ... 详细信息
来源: 评论
Robust ordinal embedding from contaminated relative comparisons
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Ke Xu, Qianqian Cao, Xiaochun State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security University of Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences
Existing ordinal embedding methods usually follow a two-stage routine: outlier detection is first employed to pick out the inconsistent comparisons;then an embedding is learned from the clean data. However, learning i... 详细信息
来源: 评论
Document-level neural machine translation with associated memory network
arXiv
收藏 引用
arXiv 2019年
作者: Jiang, Shu Wang, Rui Li, Zuchao Utiyama, Masao Chen, Kehai Sumita, Eiichiro Zhao, Hai Lu, Bao-Liang Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China National Institute of Information and Communications Technology Kyoto-shi6190289 Japan
Standard neural machine translation (NMT) is on the assumption that the document-level context is independent. Most existing document-level NMT approaches are satisfied with a smattering sense of global document-level... 详细信息
来源: 评论
A Delay-Aware Congestion Control Protocol for Wireless Sensor Networks
收藏 引用
Chinese Journal of Electronics 2017年 第3期26卷 591-599页
作者: PEI Tingrui LEI Fangqing LI Zhetao ZHU Gengming PENG Xin Youngjune CHOI Hiroo SEKIYA The College of Information Engineering Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University School of Computer Science & Engineering Hunan University of Science and Technology College of Information and Communication Engineering Hunan Institute of Science and Technology Department of Information and Computer Engineering Ajou University Graduate School of Engineering Chiba University
In wireless sensor networks,congestion leads to buffer overflowing,and increases *** traditional solutions use rate adjustment to mitigate congestion,thus increasing the delay.A Delay-aware congestion control protocol... 详细信息
来源: 评论
Self-Evolutionary Neuron Model for Fast-Response Spiking Neural Networks
TechRxiv
收藏 引用
TechRxiv 2019年
作者: Zhang, Anguo Han, Ying Hu, Jing Niu, Yuzhen Gao, Yueming Chen, Zhizhang Zhao, Kai College of Physics and Information Engineering Fuzhou University Fujian350108 China The Key Laboratory of Medical Instrumentation Pharmaceutical Technology of Fujian Province Fuzhou350116 China Research Institute of Ruijie Ruijie Networks Co. Ltd Fujian350002 China School of Public Health Xiamen University Xiamen361102 China College of Information and Intelligent Transportation Fujian Chuanzheng Communications College Fuzhou350007 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing College of Mathematics and Computer Science Fuzhou University The Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fujian350108 China College of Physics and information Engineering Fuzhou University the Key Laboratory of Medical Instrumentation Pharmaceutical Technology of Fujian Province Fujian350108 China College of Physics and Information Engineering Fuzhou University 350108 China Faculty of Science and Technology University of Macau 999078 China
We propose two simple and effective spiking neuron models to improve the response time of the conventional spiking neural network. The proposed neuron models adaptively tune the presynaptic input current depending on ... 详细信息
来源: 评论
CONTINUITY-DISCRIMINATION CONVOLUTIONAL NEURAL NETWORK FOR VISUAL OBJECT TRACKING
CONTINUITY-DISCRIMINATION CONVOLUTIONAL NEURAL NETWORK FOR V...
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Shen Li Bingpeng Ma Hong Chang Shiguang Shan Xilin Chen Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Bejing China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing China
This paper proposes a novel model, named Continuity-Discrimination Convolutional Neural Network (CD-CNN), for visual object tracking. Existing state-of-the-art tracking methods do not deal with temporal relationship i... 详细信息
来源: 评论