咨询与建议

限定检索结果

文献类型

  • 175 篇 会议
  • 86 篇 期刊文献

馆藏范围

  • 261 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 186 篇 工学
    • 135 篇 计算机科学与技术...
    • 120 篇 软件工程
    • 38 篇 信息与通信工程
    • 20 篇 控制科学与工程
    • 19 篇 生物工程
    • 16 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 11 篇 化学工程与技术
    • 10 篇 农业工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 6 篇 动力工程及工程热...
    • 5 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
  • 106 篇 理学
    • 66 篇 数学
    • 27 篇 物理学
    • 23 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 10 篇 化学
    • 4 篇 系统科学
  • 73 篇 管理学
    • 53 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 农学
    • 11 篇 作物学
  • 8 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 艺术学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 19 篇 semantics
  • 5 篇 iterative method...
  • 5 篇 data models
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 deep neural netw...
  • 4 篇 face recognition
  • 4 篇 syntactics
  • 4 篇 feature extracti...
  • 4 篇 humans
  • 4 篇 forestry
  • 3 篇 international cr...
  • 3 篇 semantic segment...
  • 3 篇 deep learning
  • 3 篇 image segmentati...
  • 3 篇 information tech...
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 space technology
  • 3 篇 information and ...

机构

  • 30 篇 key lab. of inte...
  • 21 篇 school of comput...
  • 19 篇 key lab. of inte...
  • 16 篇 university of ch...
  • 14 篇 key lab. of inte...
  • 13 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 10 篇 peng cheng labor...
  • 10 篇 school of cyber ...
  • 9 篇 key lab of intel...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 alibaba group
  • 7 篇 bdkm university ...
  • 7 篇 graduate univers...
  • 7 篇 key lab of intel...
  • 6 篇 institute of inf...
  • 6 篇 key lab of intel...
  • 6 篇 institute of dig...
  • 5 篇 graduate univers...

作者

  • 19 篇 zhuge hai
  • 18 篇 liu qun
  • 18 篇 huang qingming
  • 16 篇 xu qianqian
  • 14 篇 cao xiaochun
  • 13 篇 yang zhiyong
  • 9 篇 wang zitai
  • 9 篇 gao wen
  • 8 篇 mi haitao
  • 7 篇 qingming huang
  • 7 篇 zhiyong yang
  • 7 篇 qianqian xu
  • 7 篇 he qing
  • 7 篇 sun xiaoping
  • 7 篇 huang liang
  • 6 篇 xiaochun cao
  • 6 篇 chen xilin
  • 6 篇 hai zhuge
  • 6 篇 xiong hao
  • 5 篇 wang ran

语言

  • 247 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing and Advanced Computing Research Lab"
261 条 记 录,以下是1-10 订阅
排序:
IRSEnet: Differentially Private Image Generation with Multi-Scale Feature Extraction and Residual Channel Attention  13
IRSEnet: Differentially Private Image Generation with Multi-...
收藏 引用
13th International Conference on intelligent Control and information processing, ICICIP 2025
作者: Li, Jiahao Wang, Zhongshuai Ghazali, Kamarul Hawari Bin Yan, Suqing Lan, Rushi Sun, Xiyan Luo, Xiaonan Guangxi Key Lab. of Image and Graphic Intelligent Processing Guilin University of Electronic Technology Guilin541004 China Centre for Advanced Industrial Technology University of Malaysia Pahang Al-Sultan Abdullah Pahang Pekan26600 Malaysia Int. Joint Research Lab. of Spatio-temporal Information and Intelligent Location Services Guilin University of Electronic Technology Guilin541004 China
Privacy-preserving image generation is particularly crucial in fields like healthcare, where data are both sensitive and limited. However, effective privacy preservation often compromises the visual quality and utilit... 详细信息
来源: 评论
A Sentiment Classification Model Based on Syntactic Graph Attention Networks  24
A Sentiment Classification Model Based on Syntactic Graph At...
收藏 引用
2024 International Conference on intelligent Education and Computer Technology, IECT 2024
作者: Cheng, Yan Zhou, Ziwei School of Computer Information Engineering Jiangxi Normal University Jiangxi Nanchang330022 China Prov. Key Lab. of Intelligent Information Processing and Affective Computing of Jiangxi Province 330022 China School of Software Jiangxi Normal University 330022 China
Text Sentiment Classification, a significant task in Natural Language processing, aims to comprehend user needs and expectations by categorizing the sentiments of texts posted on platforms. Despite their utility, exis... 详细信息
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation  38
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmenta...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan...
来源: 评论
CLIMS++: Cross Language Image Matching with Automatic Context Discovery for Weakly Supervised Semantic Segmentation
收藏 引用
International Journal of Computer Vision 2025年 1-20页
作者: Xie, Jinheng Deng, Songhe Hou, Xianxu Luo, Zhaochuan Shen, Linlin Huang, Yawen Zheng, Yefeng Shou, Mike Zheng Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Department of Computer Science Wenzhou-Kean University Wenzhou325060 China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Show Lab National University of Singapore Singapore639798 Singapore School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University Suzhou215400 China Jarvis Research Center Tencent YouTu Lab Shenzhen518703 China
While promising results have been achieved in weakly-supervised semantic segmentation (WSSS), limited supervision from image-level tags inevitably induces discriminative reliance and spurious relations between target ... 详细信息
来源: 评论
ETS: An Error Tolerable System for Coreference Resolution  15
ETS: An Error Tolerable System for Coreference Resolution
收藏 引用
15th Conference on Computational Natural Language Learning, CoNLL 2011
作者: Xiong, Hao Song, Linfeng Meng, Fandong Liu, Yang Liu, Qun Lü, Yajuan Key Lab. of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences P.O. Box 2704 Beijing100190 China
This paper presents our error tolerable system for coreference resolution in CoNLL-2011(Pradhan et al., 2011) shared task (closed track). Different from most previous reported work, we detect mention candidates based ... 详细信息
来源: 评论
Evolution of Cooperation in Snowdrift Game with Multi-Memory Mechanism  42
Evolution of Cooperation in Snowdrift Game with Multi-Memory...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Liu, Yaojun Liu, Xingwen Tashi, Nyima College of Electrical Engineering Southwest Minzu University Lab. of Complex Systems & Intelligent Control Key Lab. of Electronic Information of State Ethnic Affairs Commission Sichuan Chengdu610225 China Engineering Research Center for Tibetan Information Processing School of Information Science and Technology Tibet University Lhasa850000 China
Cooperative behavior has been of great concern in evolutionary game researches because of its important role in social life and natural evolution. Since memory can greatly influence the emergence of cooperative behavi... 详细信息
来源: 评论
Learning to Localize Cross-Anatomy Landmarks in X-Ray Images with a Universal Model
收藏 引用
Biomedical Engineering Frontiers 2022年 第1期3卷 298-308页
作者: Heqin Zhu Qingsong Yao Li Xiao S.Kevin Zhou Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China Center for Medical Imaging RoboticsAnalytic Computing&Learning(MIRACLE)School of Biomedical Engineering&Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou 215123China
Objective and Impact *** this work,we develop a universal anatomical landmark detection model which learns once from multiple datasets corresponding to different anatomical *** with the conventional model trained on a... 详细信息
来源: 评论
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutual information  48
Improving Bert Fine-Tuning via Stabilizing Cross-Layer Mutua...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal processing, ICASSP 2023
作者: Li, Jicun Li, Xingjian Wang, Tianyang Wang, Shi Cao, Yanan Xu, Chengzhong Dou, Dejing Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Big Data Lab Baidu Research China University of Alabama Birmingham United States Institute of Information Engineering Chinese Academy of Sciences China State Key Lab of Iotsc University of Macau China
Fine-tuning pre-trained language models, such as BERT, has shown enormous success among various NLP tasks. Though simple and effective, the process of fine-tuning has been found unstable, which often leads to unexpect... 详细信息
来源: 评论
A Flexible Knowledge Graph Error Detection Framework Combined with Semantic information  12th
A Flexible Knowledge Graph Error Detection Framework Combine...
收藏 引用
12th CCF Conference on BigData, BigData 2024
作者: Zhao, Yangwu Liu, Yang Ao, Xiang He, Qing Henan Institute of Advanced Technology Zhengzhou University Zhengzhou China Beijing China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing China
Knowledge graphs (KGs) are extensively utilized in numerous applications, including question-answering systems and recommender systems. However, knowledge graphs are often constructed through web crawling or crowdsour... 详细信息
来源: 评论
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Language-Image Pre-Training  24
FLIP-80M: 80 Million Visual-Linguistic Pairs for Facial Lang...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Yudong Hou, Xianxu Dezhi, Zheng Shen, Linlin Zhao, Zhe School of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China Tencent AI Lab Beijing China
While significant progress has been made in multi-modal learning driven by large-scale image-text datasets, there is still a noticeable gap in the availab.lity of such datasets within the facial domain. To facilitate ... 详细信息
来源: 评论