咨询与建议

限定检索结果

文献类型

  • 175 篇 会议
  • 86 篇 期刊文献

馆藏范围

  • 261 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 186 篇 工学
    • 135 篇 计算机科学与技术...
    • 120 篇 软件工程
    • 38 篇 信息与通信工程
    • 20 篇 控制科学与工程
    • 19 篇 生物工程
    • 16 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 11 篇 化学工程与技术
    • 10 篇 农业工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 6 篇 动力工程及工程热...
    • 5 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
  • 106 篇 理学
    • 66 篇 数学
    • 27 篇 物理学
    • 23 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 10 篇 化学
    • 4 篇 系统科学
  • 73 篇 管理学
    • 53 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 农学
    • 11 篇 作物学
  • 8 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 艺术学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 19 篇 semantics
  • 5 篇 iterative method...
  • 5 篇 data models
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 deep neural netw...
  • 4 篇 face recognition
  • 4 篇 syntactics
  • 4 篇 feature extracti...
  • 4 篇 humans
  • 4 篇 forestry
  • 3 篇 international cr...
  • 3 篇 semantic segment...
  • 3 篇 deep learning
  • 3 篇 image segmentati...
  • 3 篇 information tech...
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 space technology
  • 3 篇 information and ...

机构

  • 30 篇 key lab. of inte...
  • 21 篇 school of comput...
  • 19 篇 key lab. of inte...
  • 16 篇 university of ch...
  • 14 篇 key lab. of inte...
  • 13 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 10 篇 peng cheng labor...
  • 10 篇 school of cyber ...
  • 9 篇 key lab of intel...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 alibaba group
  • 7 篇 bdkm university ...
  • 7 篇 graduate univers...
  • 7 篇 key lab of intel...
  • 6 篇 institute of inf...
  • 6 篇 key lab of intel...
  • 6 篇 institute of dig...
  • 5 篇 graduate univers...

作者

  • 19 篇 zhuge hai
  • 18 篇 liu qun
  • 18 篇 huang qingming
  • 16 篇 xu qianqian
  • 14 篇 cao xiaochun
  • 13 篇 yang zhiyong
  • 9 篇 wang zitai
  • 9 篇 gao wen
  • 8 篇 mi haitao
  • 7 篇 qingming huang
  • 7 篇 zhiyong yang
  • 7 篇 qianqian xu
  • 7 篇 he qing
  • 7 篇 sun xiaoping
  • 7 篇 huang liang
  • 6 篇 xiaochun cao
  • 6 篇 chen xilin
  • 6 篇 hai zhuge
  • 6 篇 xiong hao
  • 5 篇 wang ran

语言

  • 247 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing and Advanced Computing Research Lab"
261 条 记 录,以下是11-20 订阅
排序:
Improving Event-Level Financial Sentiment Analysis with Retrieval-Augmented Multipath Chain-of-Thought Prompting  12th
Improving Event-Level Financial Sentiment Analysis with Ret...
收藏 引用
12th CCF Conference on BigData, BigData 2024
作者: Zhang, Yiming Ao, Xiang Yu, Guoxin He, Qing Henan Institute of Advanced Technology Zhengzhou University Zhengzhou450002 China Beijing100190 China Key Lab of Intelligent Information Processing Institute of Computing Technology CAS Beijing100190 China
Event-level Financial Sentiment Analysis (EFSA) aims to extract all the quintuples containing five sentiment elements from a given financial news text, which has gained prominence as an emerging domain recently. ... 详细信息
来源: 评论
Weighted ROC curve in cost space: extending AUC to cost-sensitive learning  23
Weighted ROC curve in cost space: extending AUC to cost-sens...
收藏 引用
Proceedings of the 37th International Conference on Neural information processing Systems
作者: Huiyang Shao Qianqian Xu Zhiyong Yang Peisong Wen Peifeng Gao Qingming Huang Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS School of Computer Science and Tech. University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and BDKM University of Chinese Academy of Sciences
In this paper, we aim to tackle flexible cost requirements for long-tail datasets, where we need to construct a (1) cost-sensitive and (2) class-distribution robust learning framework. The misclassification cost and t...
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques  38
Suppress Content Shift: Better Diffusion Features via Off-th...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features  38
Not All Diffusion Model Activations Have Been Evaluated as D...
收藏 引用
38th Conference on Neural information processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
来源: 评论
Protein Structure Prediction:Challenges,Advances,and the Shift of research Paradigms
收藏 引用
Genomics, Proteomics & Bioinformatics 2023年 第5期21卷 913-925页
作者: Bin Huang Lupeng Kong Chao Wang Fusong Ju Qi Zhang Jianwei Zhu Tiansu Gong Haicang Zhang Chungong Yu Wei-Mou Zheng Dongbo Bu Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China Changping Laboratory Beijing 102206China Microsoft Research AI4Science Beijing 100080China Huawei Noah’s Ark Lab Wuhan 430206China Zhongke Big Data Academy Zhengzhou 450046China Institute of Theoretical Physics Chinese Academy of SciencesBeijing 100190China
Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields,including biochemistry,medicine,physics,mathematics,and computer *** researchers adopt various re... 详细信息
来源: 评论
Harnessing Hierarchical lab.l Distribution Variations in Test Agnostic Long-tail Recognition  41
Harnessing Hierarchical Label Distribution Variations in Tes...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Yang, Zhiyong Xu, Qianqian Wang, Zitai Li, Sicong Han, Boyu Bao, Shilong Cao, Xiaochun Huang, Qingming School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS China Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China BDKM University of Chinese Academy of Sciences China
This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test lab.l distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can b... 详细信息
来源: 评论
Harnessing hierarchical lab.l distribution variations in test agnostic long-tail recognition  24
Harnessing hierarchical label distribution variations in tes...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Zhiyong Yang Qianqian Xu Zitai Wang Sicong Li Boyu Han Shilong Bao Xiaochun Cao Qingming Huang School of Computer Science and Tech. University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University School of Computer Science and Tech. University of Chinese Academy of Sciences and 2Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS and BDKM University of Chinese Academy of Sciences
This paper explores test-agnostic long-tail recognition, a challenging long-tail task where the test lab.l distributions are unknown and arbitrarily imbalanced. We argue that the variation in these distributions can b...
来源: 评论
IRSEnet: Differentially Private Image Generation with Multi-Scale Feature Extraction and Residual Channel Attention
IRSEnet: Differentially Private Image Generation with Multi-...
收藏 引用
International Conference on intelligent Control and information processing (ICICIP)
作者: Jiahao Li Zhongshuai Wang Kamarul Hawari Bin Ghazali Suqing Yan Rushi Lan Xiyan Sun Xiaonan Luo Guangxi Key Lab. of Image and Graphic Intelligent Processing Guilin University of Electronic Technology Guilin China Centre for Advanced Industrial Technology University of Malaysia Pahang Al-Sultan Abdullah Pekan Pahang Malaysia Int. Joint Research Lab. of Spatio-temporal Information and Intelligent Location Services Guilin University of Electronic Technology Guilin China
Privacy-preserving image generation is particularly crucial in fields like healthcare, where data are both sensitive and limited. However, effective privacy preservation often compromises the visual quality and utilit... 详细信息
来源: 评论
Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 957-968页
作者: Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang School of Engineering Tokyo University of TechnologyHachiojiTokyo 192-0982Japan K.Miyamoto is with the Institute of Technology Shimizu CorporationKotoTokyo 135-0044Japan School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVIC 3122Australia School of Automation China University of GeosciencesWuhan 430074 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of EducationWuhan 430074China School of Industrial Technology Advanced Institute of Industrial TechnologyTokyo 140-0011Japan Institute of Artificial Intelligence and Future Networks Beijing Normal UniversityZhuhai 519087 Guangdong Key Lab of AI and Multi-Modal Data Processing Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science BNUHKBU United International College Zhuhai 519087China
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state *** paper presents a deep observation on and a comparison between two of those methods:the... 详细信息
来源: 评论
Energy Efficiency Maximization in RISs-Assisted UAVs-Based Edge computing Network Using Deep Reinforcement Learning
收藏 引用
Big Data Mining and Analytics 2024年 第4期7卷 1065-1083页
作者: Chuanwen Luo Jian Zhang Jianxiong Guo Yi Hong Zhibo Chen Shuyang Gu School of Information Science and Technology Beijing Forestry UniversityBeijing 100083Chinaand also with the Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland AdministrationBeijing 100083China Advanced Institute of Natural Sciences Beijing Normal UniversityZhuhai 519087Chinaand also with the Guangdong Key Lab of AI and Multi-Modal Data ProcessingBNU-HKBU United International CollegeZhuhai 519087China Department of Computer Information Systems Texas A&M University-Central TexasKilleenTX 76549USA
Edge computing(EC)pushes computational capability to the Terrestrial Devices(TDs),providing more efficient and faster computing *** Aerial Vehicles(UAVs)equipped with EC servers can be flexibly deployed,even in comple... 详细信息
来源: 评论