咨询与建议

限定检索结果

文献类型

  • 175 篇 会议
  • 86 篇 期刊文献

馆藏范围

  • 261 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 186 篇 工学
    • 135 篇 计算机科学与技术...
    • 120 篇 软件工程
    • 38 篇 信息与通信工程
    • 20 篇 控制科学与工程
    • 19 篇 生物工程
    • 16 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 电子科学与技术(可...
    • 12 篇 光学工程
    • 11 篇 化学工程与技术
    • 10 篇 农业工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 6 篇 动力工程及工程热...
    • 5 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
  • 106 篇 理学
    • 66 篇 数学
    • 27 篇 物理学
    • 23 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 10 篇 化学
    • 4 篇 系统科学
  • 73 篇 管理学
    • 53 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 农学
    • 11 篇 作物学
  • 8 篇 医学
    • 6 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 6 篇 法学
    • 6 篇 社会学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 艺术学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 19 篇 semantics
  • 5 篇 iterative method...
  • 5 篇 data models
  • 4 篇 object detection
  • 4 篇 support vector m...
  • 4 篇 deep neural netw...
  • 4 篇 face recognition
  • 4 篇 syntactics
  • 4 篇 feature extracti...
  • 4 篇 humans
  • 4 篇 forestry
  • 3 篇 international cr...
  • 3 篇 semantic segment...
  • 3 篇 deep learning
  • 3 篇 image segmentati...
  • 3 篇 information tech...
  • 3 篇 data mining
  • 3 篇 computational mo...
  • 3 篇 space technology
  • 3 篇 information and ...

机构

  • 30 篇 key lab. of inte...
  • 21 篇 school of comput...
  • 19 篇 key lab. of inte...
  • 16 篇 university of ch...
  • 14 篇 key lab. of inte...
  • 13 篇 key lab. of inte...
  • 13 篇 school of cyber ...
  • 10 篇 peng cheng labor...
  • 10 篇 school of cyber ...
  • 9 篇 key lab of intel...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 alibaba group
  • 7 篇 bdkm university ...
  • 7 篇 graduate univers...
  • 7 篇 key lab of intel...
  • 6 篇 institute of inf...
  • 6 篇 key lab of intel...
  • 6 篇 institute of dig...
  • 5 篇 graduate univers...

作者

  • 19 篇 zhuge hai
  • 18 篇 liu qun
  • 18 篇 huang qingming
  • 16 篇 xu qianqian
  • 14 篇 cao xiaochun
  • 13 篇 yang zhiyong
  • 9 篇 wang zitai
  • 9 篇 gao wen
  • 8 篇 mi haitao
  • 7 篇 qingming huang
  • 7 篇 zhiyong yang
  • 7 篇 qianqian xu
  • 7 篇 he qing
  • 7 篇 sun xiaoping
  • 7 篇 huang liang
  • 6 篇 xiaochun cao
  • 6 篇 chen xilin
  • 6 篇 hai zhuge
  • 6 篇 xiong hao
  • 5 篇 wang ran

语言

  • 247 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Key Lab. of Intelligent Information Processing and Advanced Computing Research Lab"
261 条 记 录,以下是61-70 订阅
排序:
Contrastive Learning for Robust Android Malware Familial Classification
收藏 引用
IEEE Transactions on Dependable and Secure computing 2022年 1-14页
作者: Wu, Yueming Dou, Shihan Zou, Deqing Yang, Wei Qiang, Weizhong Jin, Hai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai China University of Texas at Dallas Dallas USA National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China
Due to its open-source nature, Android operating system has been the main target of attackers to exploit. Malware creators always perform different code obfuscations on their apps to hide malicious activities. Feature... 详细信息
来源: 评论
A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment for Imbalanced Learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Zitai Xu, Qianqian Yang, Zhiyong He, Yuan Cao, Xiaochun Huang, Qingming SKLOIS Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Tech. CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Alibaba Group China School of Cyber Science and Tech. Shenzhen Campus Sun Yat-sen University China BDKM University of Chinese Academy of Sciences China
Real-world datasets are typically imbalanced in the sense that only a few classes have numerous samples, while many classes are associated with only a few samples. As a result, a naïve ERM learning process will b... 详细信息
来源: 评论
In-situ synthesized SiC/TiC/SiTiOC hybrid nanofiber mats for broad-range temperature microwave absorption
收藏 引用
Science China Technological Sciences 2025年 第6期 183-196页
作者: Yashan HUO Yuetong QIAN Minshan ZHAO Lei ZHANG Yujia TAN Zhihui HE Peng MIAO Fuchun ZHANG Wei CUI Renchao CHE School of Physics and Electronic Information Yan'an University Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering &Technology Advanced Coatings Research Center of Ministry of Education of China Fudan University School of Materials and Chemical Engineering Xi'an Technological University School of Materials Science & Engineering Tongji University College of Physics Donghua University
Efficient, temperature-insensitive electromagnetic attenuation materials are critical for high microwave absorption at high temperatures. This study presents SiC/TiC/SiTiOC hybrid nanofiber mats constructed using an i...
来源: 评论
LightXML: Transformer with dynamic negative sampling for high-performance extreme multi-lab.l text classification
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Ting Wang, Deqing Sun, Leilei Yang, Huayi Zhao, Zhengyang Zhuang, Fuzhen SKLSDE and BDBC Lab Beihang University Beijing China Key Lab of Intelligent Information Processing of CAS Institute of Computing Technology CAS Beijing China Beijing Advanced Innovation Center for Imaging Theory and Technology Academy for Multidisciplinary Studies Capital Normal University Beijing China
Extreme Multi-lab.l text Classification (XMC) is a task of finding the most relevant lab.ls from a large lab.l set. Nowadays deep learning-based methods have shown significant success in XMC. However, the existing met... 详细信息
来源: 评论
The Minority Matters: A Diversity-Promoting Collab.rative Metric Learning Algorithm
arXiv
收藏 引用
arXiv 2022年
作者: Bao, Shilong Xu, Qianqian Yang, Zhiyong He, Yuan Cao, Xiaochun Huang, Qingming State Key Laboratory of Information Security Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Alibaba Group China School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China Peng Cheng Laboratory China
Collab.rative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collab.rative Filtering. Following the convention of RS, existin... 详细信息
来源: 评论
Iterative network pruning with uncertainty regularization for lifelong sentiment classification
arXiv
收藏 引用
arXiv 2021年
作者: Geng, Binzong Yang, Min Yuan, Fajie Wang, Shupeng Ao, Xiang Xu, Ruifeng University of Science and Technology of China China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Westlake University Key Lab of Intelligent Information Processing Chinese Academy of Sciences Institute of Computing Technology CAS Harbin Institute of Technology Shenzhen China Tencent
Lifelong learning capabilities are crucial for sentiment classifiers to process continuous streams of opinioned information on the Web. However, performing lifelong learning is non-trivial for deep neural networks as ... 详细信息
来源: 评论
Global-Local Attention Network for Semantic Segmentation in Aerial Images
Global-Local Attention Network for Semantic Segmentation in ...
收藏 引用
International Conference on Pattern Recognition
作者: Minglong Li Lianlei Shan Xiaobin Li Yang Bai Dengji Zhou Weiqiang Wang Ke Lv Bin Luo Si-Bao Chen University of Chinese Academy of Sciences Beijing China Aerospace Information Research Institute Chinese Academy of Science Beijing China MOE Key Lab of Signal Processing and Intelligent Computing School of Computer Science and Technology Anhui University Hefei China
Errors in semantic segmentation could be classified into two types: the large area misclassification and inaccurate local boundaries. Previously attention-based methods typically capture rich global contextual informa... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
A Review of Artificial Fish Swarm Algorithms: Recent Advances and Applications
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Yazdani, Danial College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China Department of Electrical and Computer Engineering University of Windsor Canada College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China Institute for Intelligent Systems Research and Innovation Deakin University Australia College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University China School of Computer Science and Engineering Southern University of Science and Technology China
The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming and following behaviors. Owing to a number of salient properties, which inclu... 详细信息
来源: 评论
Design of People Flow Monitoring System in Public Place based on MD-MCNN
Design of People Flow Monitoring System in Public Place base...
收藏 引用
2020 International Conference on 5G Mobile Communication and information Science, MCIS-5G 2020
作者: Tianmin, Xiong Xiaochun, Lei Xingwen, Zheng Junyan, Chen Yizhou, Feng School of Computer and Information Security Guilin University of Electronic Technology Guilin541004 China Guangxi Colleges and Universities Key Lab. of Intelligent Processing of Computer Images and Graphics Guilin541004 China Guangxi Cooperative Innovation Center of Cloud Computing and Big Data Guilin University of Electronic Technology Guilin541004 China
Due to the limitation of hardware resources, the traditional people flow monitoring system based on computer vision in public places can't meet different crowd-scale scenarios. Therefore, a people flow monitoring ... 详细信息
来源: 评论