咨询与建议

限定检索结果

文献类型

  • 61 篇 会议
  • 38 篇 期刊文献

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 53 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 16 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 化学工程与技术
    • 5 篇 机械工程
    • 5 篇 光学工程
    • 5 篇 生物工程
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 农业工程
    • 1 篇 林业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 29 篇 理学
    • 15 篇 数学
    • 9 篇 物理学
    • 6 篇 化学
    • 5 篇 生物学
    • 4 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 18 篇 管理学
    • 11 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 6 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 5 篇 药学(可授医学、理...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 5 篇 optimization
  • 5 篇 computer vision
  • 4 篇 cameras
  • 4 篇 decoding
  • 3 篇 electroencephalo...
  • 3 篇 computational mo...
  • 3 篇 particle swarm o...
  • 3 篇 semantics
  • 3 篇 machine learning
  • 3 篇 embeddings
  • 3 篇 generators
  • 3 篇 training
  • 2 篇 routing
  • 2 篇 support vector m...
  • 2 篇 roads
  • 2 篇 deep neural netw...
  • 2 篇 noise measuremen...
  • 2 篇 transformers
  • 2 篇 anomaly detectio...
  • 2 篇 large datasets

机构

  • 30 篇 key laboratory o...
  • 26 篇 school of comput...
  • 16 篇 pazhou lab
  • 16 篇 school of data a...
  • 13 篇 peng cheng labor...
  • 12 篇 guangdong provin...
  • 7 篇 key lab. of mach...
  • 6 篇 key lab. of shan...
  • 6 篇 center for brain...
  • 6 篇 pengcheng lab
  • 5 篇 tongyi lab aliba...
  • 4 篇 moe-microsoft ke...
  • 4 篇 youtu lab tencen...
  • 4 篇 key lab. machine...
  • 3 篇 japan advanced i...
  • 3 篇 engineering rese...
  • 3 篇 guangdong key la...
  • 3 篇 microsoft resear...
  • 3 篇 guangdong key la...
  • 3 篇 the school of co...

作者

  • 26 篇 zheng wei-shi
  • 9 篇 lu bao-liang
  • 6 篇 fu shenghao
  • 6 篇 zhao hai
  • 6 篇 wei-shi zheng
  • 6 篇 xie xiaohua
  • 5 篇 wei xihan
  • 5 篇 yan junkai
  • 5 篇 yang qize
  • 5 篇 su qinliang
  • 4 篇 hong fa-ting
  • 4 篇 xu zenan
  • 4 篇 jun zhang
  • 4 篇 quan xiaojun
  • 4 篇 wei-neng chen
  • 4 篇 zhang jun
  • 4 篇 wang rui
  • 3 篇 jianhuang lai
  • 3 篇 lin kun-yu
  • 3 篇 shan ying

语言

  • 91 篇 英文
  • 8 篇 其他
检索条件"机构=Key Lab. of Machine Intelligence and Advanced Computing"
99 条 记 录,以下是71-80 订阅
排序:
SIOD: Single Instance Annotated Per Category Per Image for Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Li, Hanjun Pan, Xingjia Yan, Ke Tang, Fan Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-Sen University China Youtu Lab Tencent China Jilin University China Peng Cheng Laboratory China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education
Object detection under imperfect data receives great attention recently. Weakly supervised object detection (WSOD) suffers from severe localization issues due to the lack of instance-level annotation, while semi-super... 详细信息
来源: 评论
Combined depth space based architecture search for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hanjun Wu, Gaojie Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University China Peng Cheng Laboratory Shenzhen518005 China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Pazhou Lab Guangzhou China
Most works on person re-identification (ReID) take advantage of large backbone networks such as ResNet, which are designed for image classification instead of ReID, for feature extraction. However, these backbones may... 详细信息
来源: 评论
Syntax-enhanced Pre-trained model
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis
Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yanzuo Lu Manlin Zhang Andy J Ma Xiaohua Xie Jianhuang Lai School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Pazhou Lab (HuangPu) Guangzhou China
Diffusion model is a promising approach to image generation and has been employed for Pose-Guided Person Image Synthesis (PGPIS) with competitive performance. While existing methods simply align the person appearance ... 详细信息
来源: 评论
Cross-camera feature prediction for intra-camera supervised person re-identification across distant scenes
arXiv
收藏 引用
arXiv 2021年
作者: Ge, Wenhang Pan, Chunyan Wu, Ancong Zheng, Hongwei Zheng, Wei-Shi School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Pazhou Lab Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Universtiy of Chinese Academy of Sciences Xinjiang China
Person re-identification (Re-ID) aims to match person images across non-overlapping camera views. The majority of Re-ID methods focus on small-scale surveillance systems in which each pedestrian is captured in differe... 详细信息
来源: 评论
BTI Aging Monitoring based on SRAM Start-up Behavior
BTI Aging Monitoring based on SRAM Start-up Behavior
收藏 引用
Asian Test Symposium (ATS)
作者: Shengyu Duan Peng Wang Gaole Sai School of Computer Engineering and Science Shanghai University Shanghai China State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China State Key Laboratory of Mathematical Engineering and Advanced Computing Wuxi China Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology China
Bias Temperature Instability (BTI) is one of the dominant CMOS aging mechanisms. It causes time-dependent variation, threatening circuit lifetime reliability. BTI-induced circuit errors are not detectable at the fabri... 详细信息
来源: 评论
Gray Learning from Non-IID Data with Out-of-distribution Samples
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Zhilin Cao, Longbing Wang, Chang-Dong The Data Science Lab School of Computing and DataX Research Centre Macquarie University SydneyNSW2109 Australia The School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Province Key Laboratory of Computational Science Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
The integrity of training data, even when annotated by experts, is far from guaranteed, especially for non-IID datasets comprising both in- and out-of-distribution samples. In an ideal scenario, the majority of sample... 详细信息
来源: 评论
Exploring architectural ingredients of adversarially robust deep neural networks  21
Exploring architectural ingredients of adversarially robust ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Hanxun Huang Yisen Wang Sarah Erfani Quanquan Gu James Bailey Xingjun Ma School of Computing and Information Systems The University of Melbourne Victoria Australia Key Lab. of Machine Perception School of Artificial Intelligence Peking University Beijing China and Institute for Artificial Intelligence Peking University Beijing China University of California Los Angeles School of Computer Science Fudan University Shanghai China
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks. A range of defense methods have been proposed to train adversarially robust DNNs, among which adversarial training has demonstrated promis...
来源: 评论
Multi-Stage Speaker Extraction with Utterance and Frame-Level Reference Signals
Multi-Stage Speaker Extraction with Utterance and Frame-Leve...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Meng Ge Chenglin Xu Longbiao Wang Eng Siong Chng Jianwu Dang Haizhou Li Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China School of Computer Science and Engineering Nanyang Technological University Singapore National University of Singapore Singapore Japan Advanced Institute of Science and Technology Ishikawa Japan Machine Listening Lab University of Bremen Germany
Speaker extraction requires a sample speech from the target speaker as the reference. However, enrolling a speaker with a long speech is not practical. We propose a speaker extraction technique, that performs in multi... 详细信息
来源: 评论
MINI-Net: Multiple instance ranking network for video highlight detection
arXiv
收藏 引用
arXiv 2020年
作者: Hong, Fa-Ting Huang, Xuanteng Li, Wei-Hong Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University China Peng Cheng Laboratory Shenzhen518005 China VICO Group University of Edinburgh United Kingdom Pazhou Lab Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
We address the weakly supervised video highlight detection problem for learning to detect segments that are more attractive in training videos given their video event lab.l but without expensive supervision of manuall... 详细信息
来源: 评论