咨询与建议

限定检索结果

文献类型

  • 41 篇 会议
  • 9 篇 期刊文献

馆藏范围

  • 50 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 26 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 14 篇 信息与通信工程
    • 10 篇 光学工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 30 篇 理学
    • 26 篇 数学
    • 10 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 生物学
    • 2 篇 化学
    • 1 篇 系统科学
  • 9 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 target tracking
  • 3 篇 motion planning
  • 3 篇 feature extracti...
  • 3 篇 image reconstruc...
  • 2 篇 medical imaging
  • 2 篇 neural networks
  • 2 篇 face recognition
  • 2 篇 pattern recognit...
  • 2 篇 face
  • 2 篇 discrete fourier...
  • 2 篇 field programmab...
  • 2 篇 accuracy
  • 1 篇 falling point tr...
  • 1 篇 image enhancemen...
  • 1 篇 granulation
  • 1 篇 motion estimatio...
  • 1 篇 autonomous optic...
  • 1 篇 support vector m...
  • 1 篇 target localizat...
  • 1 篇 heterogeneous gr...

机构

  • 7 篇 state key lab. o...
  • 5 篇 state key lab. f...
  • 3 篇 college of life ...
  • 3 篇 state key lab. f...
  • 3 篇 shanghai jiao to...
  • 3 篇 institute for pa...
  • 2 篇 institute of ima...
  • 2 篇 state key lab. f...
  • 2 篇 state key lab. o...
  • 2 篇 state key lab. f...
  • 2 篇 hubei university...
  • 2 篇 inst. for patter...
  • 1 篇 department of au...
  • 1 篇 national laborat...
  • 1 篇 college of infor...
  • 1 篇 school of comput...
  • 1 篇 college of life ...
  • 1 篇 key lab. of educ...
  • 1 篇 school of mathem...
  • 1 篇 key lab of intel...

作者

  • 7 篇 cao zhiguo
  • 4 篇 cai chao
  • 4 篇 ding mingyue
  • 4 篇 wang yuehuan
  • 3 篇 chen gong
  • 3 篇 yang yang
  • 3 篇 jinwen tian
  • 3 篇 zheng yi
  • 3 篇 jian liu
  • 3 篇 shen hong-bin
  • 3 篇 li shidong
  • 2 篇 zhanyu ma
  • 2 篇 yao wei
  • 2 篇 jie yang
  • 2 篇 liu xin
  • 2 篇 zhang tian-xu
  • 2 篇 liu jianguo
  • 2 篇 li shanshan
  • 2 篇 li dehua
  • 2 篇 zhuo wen

语言

  • 47 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Key Lab. of Pattern Recognition and Intelligent Information Processing"
50 条 记 录,以下是1-10 订阅
排序:
Isoform Function Prediction Based on Heterogeneous Graph Attention Networks
Isoform Function Prediction Based on Heterogeneous Graph Att...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Guo, Kuo Li, Yifan Chen, Hao Shen, Hong-Bin Yang, Yang Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai200240 China Carnegie Mellon University School of Computer Science Computational Biology Department PittsburghPA15213 United States
Isoforms refer to different mRNA molecules transcribed from the same gene, which can be translated into proteins with varying structures and functions. Predicting the functions of isoforms is an essential topic in bio... 详细信息
来源: 评论
SliceProp: A Slice-Wise Bidirectional Propagation Model for Interactive 3D Medical Image Segmentation  1
SliceProp: A Slice-Wise Bidirectional Propagation Model for ...
收藏 引用
1st IEEE International Conference on Medical Artificial Intelligence, MedAI 2023
作者: Xu, Xin Lu, Wenjing Lei, Jiahao Qiu, Peng Shen, Hong-Bin Yang, Yang Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Department of Vascular Surgery China Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
Interactive medical image segmentation methods have become increasingly popular in recent years. These methods combine manual lab.ling and automatic segmentation, reducing the workload of annotation while maintaining ... 详细信息
来源: 评论
An Active Landing Recovery Method for Quadrotor UAV: Localization, Tracking and Buffering Landing
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 3366-3372页
作者: Yongkang Xu Zhihua Chen Shoukun Wang Junzheng Wang National Key Lab of Autonomous Intelligent Unmanned Systems Beijing Institute of Technology Beijing CO 100081 P.R.China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition and MOE Key Lab of Nondestructive Testing Technology School of Information Engineering Nanchang Hangkong University Nanchang CO 330063 P.R. China
This paper proposes a principle of fully autonomous ground mobile landing recovery of Unmanned Aerial Vehicles (UAV) for the problems of relatively fixed landing point, passive recovery, poor flexibility, and environm... 详细信息
来源: 评论
EFFICIENT ONLINE lab.L CONSISTENT HASHING FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
EFFICIENT ONLINE LABEL CONSISTENT HASHING FOR LARGE-SCALE CR...
收藏 引用
2021 IEEE International Conference on Multimedia and Expo, ICME 2021
作者: Yi, Jinhan Liu, Xin Cheung, Yiu-Ming Xu, Xing Fan, Wentao He, Yi Department of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Lab. of Computer Vision and Pattern Recognition Fujian Key Lab. of Big Data Intelligence and Security China Department of Computer Science Hong Kong Baptist University Kowloon Hong Kong School of Computer Science and Engineering University of Electronic Science and Technology of China China Provincial Key Laboratory for Computer Information Processing Technology Soochow University China
Existing cross-modal hashing still faces three challenges: (1) Most batch-based methods are unsuitable for processing large-scale and streaming data. (2) Current online methods often suffer from insufficient semantic ... 详细信息
来源: 评论
Multi-granulation variable precision rough set based on limited tolerance relation
收藏 引用
UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 2021年 第3期83卷 63-74页
作者: Wan, Renxia Yao, Yonghong Kumar, Hussain School of Mathematics and Information Science North Minzu University Ningxia750021 China HongYang Institute for Big Data in Health Fuzhou Fujian350028 China School of Mathematical Sciences Tiangong University Tianjin300387 China The Key Laboratory of Intelligent Information and Data Processing of NingXia Province North Minzu University and Health Big Data Research Institute of North Minzu University Yinchuan750021 China Machine vision and pattern recognition lab University of Regina ReginaSKS4S0A2 Canada
In this paper, the combination of the variable precision rough set and the limited tolerance relation under multi-granularity is explored. As an extension of rough set model, Multi-granularity variable precision limit... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM Image processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
作者: Hu, Rui Cai, Jiaming Zheng, Wangjie Yang, Yang Shen, Hong-Bin Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai200240 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China Shanghai Jiao Tong University Department of Bioinformatics and Biostatistics Shanghai200240 China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on pattern recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
FICAL: Focal Inter-Class Angular Loss for Image Classification
FICAL: Focal Inter-Class Angular Loss for Image Classificati...
收藏 引用
IEEE Visual Communications and Image processing Conference
作者: Xinran Wei Dongliang Chang Jiyang Xie Yixiao Zheng Chen Gong Chuang Zhang Zhanyu Ma Pattern Recognition and Intelligent Systems Lab. Beijing University of Posts and Telecommunications Beijing China PCA Lab Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education
Convolutional Neural Networks (CNNs) have been successfully applied in various image analysis tasks and gradually become one of the most powerful machine learning approaches. In order to improve the capability of the ... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论