Feature representation and feature fusion are important factors in image classification problem. In this paper, the local features, mid-level features and convolutional features are combined using the multiple kernel ...
Feature representation and feature fusion are important factors in image classification problem. In this paper, the local features, mid-level features and convolutional features are combined using the multiple kernel learning method. Experimental results show that the local features, mid-level features and convolutional features can be fused effectively to improve the classification performance about 4%-6% on several popular benchmarks.
Feature selection is an essential technique used in data mining and machinelearning. Many feature selection methods have been studied for supervised problems. However feature selection for unsupervised learning is ra...
详细信息
Feature selection is an essential technique used in data mining and machinelearning. Many feature selection methods have been studied for supervised problems. However feature selection for unsupervised learning is rarely studied. In this paper, we proposed an approach to select features for unsupervised problems. Firstly, the original features are clustered according to their relevance degree defined by mutual information. And then the most informative feature is selected from each cluster based on the contribution-information of each feature. The experimental results show that the proposed method can match some popular supervised feature selection methods. And the features selected by our method do include most of the information hidden in the overall original features.
Feature weighting, which is considered as an extension of feature selection techniques, has been successfully applied to improve the performance of clustering. Focusing on the clustering based on a similarity matrix, ...
详细信息
ISBN:
(纸本)9781479902590
Feature weighting, which is considered as an extension of feature selection techniques, has been successfully applied to improve the performance of clustering. Focusing on the clustering based on a similarity matrix, we design an optimization model to minimize the fuzziness of similarity matrix by learning feature weights. The objective of this model is to get a more reasonable result of clustering through minimizing the uncertainty (fuzziness and non-specificity) of similarity matrix. To solving this optimization model effectively, we propose a new searching approach which integrates together multiple evolution strategies of both differential evolution and dynamic differential evolution. The experimental results on several benchmark datasets show that the performance of the proposed method is significantly improved compared to that of gradient-descent-based approach in terms of five selected clustering evaluation indices, i.e., fuzziness of similarity matrix, intra-class similarity, inter-class similarity, ratio of intra-class similarity to inter-class similarity.
In this study, we study set operations on type-2 fuzzy sets. We first discuss join and meet operations of membership grades of type-2 fuzzy sets under left continuous t-norms and derive distributive law of type-2 fuzz...
详细信息
In this study, we study set operations on type-2 fuzzy sets. We first discuss join and meet operations of membership grades of type-2 fuzzy sets under left continuous t-norms and derive distributive law of type-2 fuzzy sets. Then, some properties on compositions of fuzzy relations is discussed. We derived that the distributive laws under union and composition of type-2 fuzzy relations is valid. An example shows the failure of distributive laws under intersection and composition.
Distribution network cabling planning is a very complex project This paper proposes the application of intelligent decision support technology in Power System. By adding a module library and the concept of model manag...
详细信息
Distribution network cabling planning is a very complex project This paper proposes the application of intelligent decision support technology in Power System. By adding a module library and the concept of model management systems, Intelligent Power Service System realizes intelligence decision support in the distribution network power cabling planning by using dynamic programming, spatial data mining and decision tree techniques, and has a certain amount of self-learning ability.
This paper presents a reasoning algorithm based on interaction with fuzzy rule matrix transformation, and applies it to completing the patterns. Then the new full patterns will be used in training and synthetic judgme...
详细信息
This paper presents a reasoning algorithm based on interaction with fuzzy rule matrix transformation, and applies it to completing the patterns. Then the new full patterns will be used in training and synthetic judgment The investigation shows that the method is effective and may be widely used in Reasoning with Incomplete Knowledge.
Decision tree induction is one of the useful approaches for extracting classification knowledge from a set of feature-based instances. The most popular heuristic information used in the decision tree generation is the...
详细信息
Decision tree induction is one of the useful approaches for extracting classification knowledge from a set of feature-based instances. The most popular heuristic information used in the decision tree generation is the minimum entropy. This heuristic information has a serious disadvantage-the poor generalization capability [3]. Support Vector machine (SVM) is a classification technique of machinelearning based on statistical learning theory. It has good generalization. Considering the relationship between the classification margin of support vector machine(SVM) and the generalization capability, the large margin of SVM can be used as the heuristic information of decision tree, in order to improve its generalization *** paper proposes a decision tree induction algorithm based on large margin heuristic. Comparing with the binary decision tree using the minimum entropy as the heuristic information, the experiments show that the generalization capability has been improved by using the new heuristic.
A new method to solve the convex hull problem in n-dimensional spaces is proposed in this paper. At each step, a new point is added into the convex hull if the point is judged to be out of the current convex hull by a...
详细信息
A new method to solve the convex hull problem in n-dimensional spaces is proposed in this paper. At each step, a new point is added into the convex hull if the point is judged to be out of the current convex hull by a linear programming model. For the linear separable classification problem, if an instance is regarded as a point of the instances space, the overlap does not still occur between the convex hulls of different classes after a feature is deleted, then we can delete that feature. Repeat this process, an algorithm for feature selection is given. Experimental results show the effectiveness of the algorithm.
MCS (Minimal Consistent Set) is one of the classical algorithms for minimal consistent subset selection problem. However, when noisy samples are present classification accuracy can suffer. In addition, noise affect th...
详细信息
MCS (Minimal Consistent Set) is one of the classical algorithms for minimal consistent subset selection problem. However, when noisy samples are present classification accuracy can suffer. In addition, noise affect the size of minimal consistent set. Therefore, removing noise is an important issue before sample selection. In this paper, an improvement approach based on MCS to select the representative samples is proposed. Compared with other algorithms which remove the noise by Wilson Editing in advance for the representative samples selection, this algorithm performs the processes of noise removing and samples selection simultaneously. According to this method, most noise can be deleted and the most representative samples can be identified and retained. The experiments show that the proposed method can greatly remove the redundant samples and noise as well as increase the accuracy of solutions when it is used for classification tasks.
Searching frequent patterns in transactional databases is considered as one of the most important data mining problems and Apriori is one of the typical algorithms for this task. Developing fast and efficient algorith...
详细信息
暂无评论