咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 88 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 50 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 30 篇 控制科学与工程
    • 9 篇 信息与通信工程
    • 3 篇 机械工程
    • 2 篇 化学工程与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
  • 37 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 35 篇 理学
    • 30 篇 数学
    • 9 篇 系统科学
    • 6 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 物理学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 support vector m...
  • 4 篇 rough set
  • 4 篇 fuzzy measure
  • 4 篇 decision trees
  • 3 篇 support vector m...
  • 3 篇 random variables
  • 3 篇 dominance relati...
  • 3 篇 fuzzy integral
  • 3 篇 classification a...
  • 3 篇 classification (...
  • 3 篇 training
  • 2 篇 information syst...
  • 2 篇 core vector mach...
  • 2 篇 rough sets
  • 2 篇 approximation al...
  • 2 篇 core set
  • 2 篇 noise measuremen...
  • 2 篇 decision tree
  • 2 篇 variable precisi...
  • 2 篇 extended dominan...

机构

  • 23 篇 key lab. of mach...
  • 9 篇 key lab.of machi...
  • 6 篇 college of mathe...
  • 6 篇 key lab.of machi...
  • 5 篇 key lab.in machi...
  • 4 篇 key lab of machi...
  • 4 篇 key lab. of mach...
  • 4 篇 key lab. of mach...
  • 3 篇 key lab. in mach...
  • 3 篇 college of scien...
  • 3 篇 center for machi...
  • 3 篇 department of in...
  • 3 篇 key lab. in mach...
  • 2 篇 beijing key lab ...
  • 2 篇 key laboratory o...
  • 2 篇 college of mathe...
  • 2 篇 key lab. in mach...
  • 2 篇 key lab of high ...
  • 2 篇 beijing academy ...
  • 2 篇 graduate univers...

作者

  • 9 篇 yan li
  • 9 篇 li yan
  • 8 篇 xi-zhao wang
  • 5 篇 yuan fang
  • 4 篇 yan zhan
  • 4 篇 jun-hai zhai
  • 4 篇 su-fang zhang
  • 4 篇 jun-fen chen
  • 3 篇 li zhao
  • 3 篇 zhan yan
  • 3 篇 guo-fang zhang
  • 3 篇 wang xizhao
  • 3 篇 zhai jun-hai
  • 3 篇 lu shuxia
  • 3 篇 qun-feng zhang
  • 3 篇 chen hao
  • 3 篇 shuxia lu
  • 3 篇 ai-xia chen
  • 3 篇 zhai junhai
  • 3 篇 ning li

语言

  • 87 篇 英文
  • 1 篇 其他
检索条件"机构=Key Lab.of Machine Learning and Computational Intelligence"
88 条 记 录,以下是81-90 订阅
排序:
Imbalanced Data Classification Based on Extreme learning machine Autoencoder
Imbalanced Data Classification Based on Extreme Learning Mac...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Chu Shen Su-Fang Zhang Jun-Hai Zhai Ding-Sheng Luo Jun-Fen Chen Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding Hebei China Hebei Branch of China Meteorological Administration Training Center China Meteorological Administration Baoding China Key Lab. of Machine Perception (Ministry of Education) School of EECS Peking University Beijing China
In practice, there are many imbalanced data classification problems, for example, spam filtering, credit card fraud detection and software defect prediction etc. it is important in theory as well as in application for... 详细信息
来源: 评论
Recent Advance On Generative Adversarial Networks
Recent Advance On Generative Adversarial Networks
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Su-Fang Zhang Jun-Hai Zhai Ding-Sheng Luo Yan Zhan Jun-Fen Chen Hebei Branch of China Meteorological Administration Training Center China Meteorological Administration Baoding China Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding Hebei China KeyLab. of Machine Perception (Ministry of Education) Speech and Hearing Research Center Department of Machine Intelligence School of EECS Peking University Beijing China
Generative adversarial networks (GANs) has received wide attention in the machine learning field because it can generate real-like data by estimating real data probability distribution. GANs has been successfully appl... 详细信息
来源: 评论
An Ordinal Random Forest and Its Parallel Implementation with MapReduce
An Ordinal Random Forest and Its Parallel Implementation wit...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Shanshan Wang Junhai Zhai Sufang Zhang Hong Zhu School of Computer Science and Technology Hebei University Baoding China Key Lab. of Machine Learning and Computational Intelligence Hebei University Baoding China College of Mathematics Zhejiang Normal University Jinhua China Hebei Branch of Meteorological Cadres Training Institute China Meteorological Administration Baoding China
Ordinal decision tree (ODT) can effectively deal with monotonic classification problems. However, it is difficult for the existing ordinal decision tree algorithms to learning ODT from large data sets. Based on the va... 详细信息
来源: 评论
NC-ALG: Graph-Based Active learning Under Noisy Crowd
NC-ALG: Graph-Based Active Learning Under Noisy Crowd
收藏 引用
International Conference on Data Engineering
作者: Wentao Zhang Yexin Wang Zhenbang You Yang Li Gang Cao Zhi Yang Bin Cui Center for Machine Learning Research Peking University Institute of Advanced Algorithms Research Shanghai National Engineering Labratory for Big Data Analytics and Applications Key Lab of High Confidence Software Technologies Peking University Department of Data Platform TEG Tencent Inc. Beijing Academy of Artificial Intelligence Institute of Computational Social Science Peking University Qingdao
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
Author Correction: π-HuB: the proteomic navigator of the human body
收藏 引用
Nature 2025年 第8046期637卷 E22页
作者: Fuchu He Ruedi Aebersold Mark S Baker Xiuwu Bian Xiaochen Bo Daniel W Chan Cheng Chang Luonan Chen Xiangmei Chen Yu-Ju Chen Heping Cheng Ben C Collins Fernando Corrales Jürgen Cox Weinan E Jennifer E Van Eyk Jia Fan Pouya Faridi Daniel Figeys George Fu Gao Wen Gao Zu-Hua Gao Keisuke Goda Wilson Wen Bin Goh Dongfeng Gu Changjiang Guo Tiannan Guo Yuezhong He Albert J R Heck Henning Hermjakob Tony Hunter Narayanan Gopalakrishna Iyer Ying Jiang Connie R Jimenez Lokesh Joshi Neil L Kelleher Ming Li Yang Li Qingsong Lin Cui Hua Liu Fan Liu Guang-Hui Liu Yansheng Liu Zhihua Liu Teck Yew Low Ben Lu Matthias Mann Anming Meng Robert L Moritz Edouard Nice Guang Ning Gilbert S Omenn Christopher M Overall Giuseppe Palmisano Yaojin Peng Charles Pineau Terence Chuen Wai Poon Anthony W Purcell Jie Qiao Roger R Reddel Phillip J Robinson Paola Roncada Chris Sander Jiahao Sha Erwei Song Sanjeeva Srivastava Aihua Sun Siu Kwan Sze Chao Tang Liujun Tang Ruijun Tian Juan Antonio Vizcaíno Chanjuan Wang Chen Wang Xiaowen Wang Xinxing Wang Yan Wang Tobias Weiss Mathias Wilhelm Robert Winkler Bernd Wollscheid Limsoon Wong Linhai Xie Wei Xie Tao Xu Tianhao Xu Liying Yan Jing Yang Xiao Yang John Yates Tao Yun Qiwei Zhai Bing Zhang Hui Zhang Lihua Zhang Lingqiang Zhang Pingwen Zhang Yukui Zhang Yu Zi Zheng Qing Zhong Yunping Zhu State Key Laboratory of Medical Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China. hefc@***. International Academy of Phronesis Medicine (Guangdong) Guangdong China. hefc@***. Department of Biology Institute of Molecular Systems Biology ETH Zurich Zurich Switzerland. aebersold@imsb.biol.ethz.ch. Macquarie Medical School Macquarie University Sydney New South Wales Australia. Institute of Pathology and Southwest Cancer Center Southwest Hospital Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing China. Institute of Health Service and Transfusion Medicine Beijing China. Department of Pathology and The Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore MD USA. State Key Laboratory of Medical Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China. Key Laboratory of Systems Biology Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai China. Department of Nephrology First Medical Center of Chinese PLA General Hospital Nephrology Institute of the Chinese People's Liberation Army State Key Laboratory of Kidney Diseases National Clinical Research Center for Kidney Diseases Beijing Key Laboratory of Kidney Disease Research Beijing China. Institute of Chemistry Academia Sinica Taipei China. National Biomedical Imaging Center State Key Laboratory of Membrane Biology Institute of Molecular Medicine Peking-Tsinghua Center for Life Sciences College of Future Technology Peking University Beijing China. School of Biological Sciences Queen's University of Belfast Belfast UK. Functional Proteomics Laboratory Centro Nacional de Biotecnología-CSIC Madrid Spain. Computational Systems Biochemistry Research Group Ma
来源: 评论