咨询与建议

限定检索结果

文献类型

  • 654 篇 会议
  • 485 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,143 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 744 篇 工学
    • 606 篇 计算机科学与技术...
    • 486 篇 软件工程
    • 170 篇 信息与通信工程
    • 76 篇 控制科学与工程
    • 66 篇 生物工程
    • 58 篇 电气工程
    • 42 篇 电子科学与技术(可...
    • 38 篇 化学工程与技术
    • 36 篇 机械工程
    • 29 篇 生物医学工程(可授...
    • 23 篇 仪器科学与技术
    • 23 篇 动力工程及工程热...
    • 18 篇 建筑学
    • 17 篇 光学工程
    • 17 篇 交通运输工程
    • 17 篇 航空宇航科学与技...
    • 14 篇 土木工程
  • 300 篇 理学
    • 180 篇 数学
    • 66 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 51 篇 物理学
    • 39 篇 化学
    • 24 篇 系统科学
  • 298 篇 管理学
    • 181 篇 图书情报与档案管...
    • 144 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 39 篇 法学
    • 33 篇 社会学
  • 28 篇 医学
    • 27 篇 临床医学
    • 19 篇 基础医学(可授医学...
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 7 篇 教育学
  • 6 篇 文学
  • 5 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 60 篇 semantics
  • 39 篇 knowledge engine...
  • 36 篇 data mining
  • 32 篇 training
  • 25 篇 feature extracti...
  • 23 篇 data engineering
  • 21 篇 computational mo...
  • 20 篇 xml
  • 20 篇 laboratories
  • 20 篇 data models
  • 19 篇 conferences
  • 19 篇 big data
  • 19 篇 information retr...
  • 18 篇 task analysis
  • 18 篇 knowledge manage...
  • 17 篇 visualization
  • 16 篇 databases
  • 15 篇 search engines
  • 15 篇 knowledge graph
  • 15 篇 algorithm design...

机构

  • 196 篇 school of inform...
  • 106 篇 school of comput...
  • 53 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 34 篇 college of compu...
  • 33 篇 school of inform...
  • 32 篇 jiangxi key labo...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 28 篇 key laboratory o...
  • 27 篇 department of ma...
  • 25 篇 key laboratory o...
  • 24 篇 school of econom...
  • 23 篇 key laboratory o...
  • 21 篇 school of inform...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 18 篇 key lab of data ...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...

作者

  • 71 篇 du xiaoyong
  • 63 篇 chen hong
  • 41 篇 li cuiping
  • 37 篇 xiaoyong du
  • 33 篇 wang meng
  • 32 篇 he jun
  • 31 篇 liu hongyan
  • 31 篇 wu xindong
  • 30 篇 li xirong
  • 29 篇 hong chen
  • 29 篇 xindong wu
  • 29 篇 wang shan
  • 29 篇 zhang jing
  • 23 篇 sun geng
  • 22 篇 niyato dusit
  • 22 篇 liu jun
  • 19 篇 huang qingming
  • 18 篇 shan wang
  • 18 篇 xu qianqian
  • 18 篇 hong richang

语言

  • 966 篇 英文
  • 154 篇 其他
  • 23 篇 中文
检索条件"机构=Key Laboratories of Data Engineering and Knowledge Engineering"
1143 条 记 录,以下是581-590 订阅
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Wenzheng Xu, Qianqian Yang, Zhiyong Bao, Shilong He, Yuan Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen China
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that t... 详细信息
来源: 评论
Intervention Prediction for Patients with Pressure Injury Using Random Forest
Intervention Prediction for Patients with Pressure Injury Us...
收藏 引用
IEEE International Conference on Big knowledge (ICBK)
作者: Liuqi Jin Yan Pan Jiaoyun Yang Lin Han Lin Lv Miki Raviv Ning An Key Laboratory of Knowledge Engineering with Big Data of the Ministry of Education School of Computer Science and Information Engineering Hefei University of Technology Hefei China Evidence-Based Nursing Center School of Nursing Lanzhou University Lanzhou China Gansu Provincal Hospital Wound and Ostomy Care Center Lanzhou China Vitalerter LTD Ha-Yarden Airport City Israel
Pressure injury (PI) is one of the major causes of short-term death. Early intervention for patients at risk plays an essential role in PI. However, many nurses may ignore risks. This paper aims to establish a model t... 详细信息
来源: 评论
Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Lei Wu, Le Hong, Richang Zhang, Kun Wang, Meng Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology School of Computer Science and Information Engineering HeFei University of Technology School of Computer Science and Technology University of Science and Technology of China
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. R... 详细信息
来源: 评论
Research on Influencing Factors of College Students' Intention of Online Health Information Behavior Based on Social Cognitive Theory  2
Research on Influencing Factors of College Students' Intenti...
收藏 引用
2019 2nd International Conference on Advanced Algorithms and Control engineering, ICAACE 2019
作者: Kong, Jia Deng, Sanhong Zhang, Yue School of Information Management Nanjing University Nanjing210023 China Jiangsu Key Laboratory of Data Engineering and Knowledge Service Nanjing University Nanjing210023 China
Based on the Social Cognition Theory, we constructed the influencing factors model of college students' intention of online health information behavior from three levels of individual, society and information syst... 详细信息
来源: 评论
Pan-Sharpening Based On Parallel Pyramid Convolutional Neural Network
Pan-Sharpening Based On Parallel Pyramid Convolutional Neura...
收藏 引用
IEEE International Conference on Image Processing
作者: Shuai Fang Xiao Wang Jing Zhang Yang Cao Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology) Hefei China Department of Automation University of Science and Technology of China Hefei Anhui China
Existing deep learning-based pan-sharpening methods mainly learn spatial information from a high-resolution (HR) panchromatic (PAN) image for each spectral channel. However, due to the own characteristics of remote se... 详细信息
来源: 评论
Research Progress of CDT  19
Research Progress of CDT
收藏 引用
Proceedings of the 2019 8th International Conference on Bioinformatics and Biomedical Science
作者: Gao Yuting Shen Shutong Deng Sanhong School of Information Management Nanjing University China School of Information Management Nanjing University China Key Laboratory of Data Engineering and Knowledge Services in Jiangsu Province
With the high mortality rate for the cases of malignant tumors, the discovery and early treatment of cancer is critical to improving the 5-year survival rate of cancer. The biggest challenge in control and prevention ... 详细信息
来源: 评论
A Survey on Accuracy-oriented Neural Recommendation: From Collaborative Filtering to Information-rich Recommendation
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Le He, Xiangnan Wang, Xiang Zhang, Kun Wang, Meng Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Anhui Hefei230029 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Anhui Hefei230088 China University of Science and Technology of China Hefei230026 China National University of Singapore Singapore
Influenced by the great success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we ... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Zhaoxin Zhu, Yazhi He, Yulin Sun, Qi Liu, Hongyan He, Jun Key Laboratory of Data Engineering and Knowledge Engineering of MOE School of Information Renmin University of China Beijing China No. 59 Zhongguancun Street Haidian Dist Beijing100872 China Institute of Information Science Beijing Jiaotong University No.3 Shangyuancun Haidian Dist. Beijing China School of Economics and Management Tsinghua University Haidian Dist Beijing100084 China
Object pose detection and tracking has recently attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality. Among methods for object pose det... 详细信息
来源: 评论
Feature re-learning with data augmentation for video relevance prediction
arXiv
收藏 引用
arXiv 2020年
作者: Dong, Jianfeng Wang, Xun Zhang, Leimin Xu, Chaoxi Yang, Gang Li, Xirong College of Computer and Information Engineering Zhejiang Gongshang University Hangzhou310035 China Key Lab of Data Engineering and Knowledge Engineering Renmin University of China AI & Media Computing Lab School of Information Renmin University of China Beijing100872 China
Predicting the relevance between two given videos with respect to their visual content is a key component for content-based video recommendation and retrieval. Thanks to the increasing availability of pre-trained imag... 详细信息
来源: 评论