咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 282 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 578 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 398 篇 工学
    • 274 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 107 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 控制科学与工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 256 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 86 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 67 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 19 篇 pattern recognit...
  • 19 篇 semantics
  • 18 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 556 篇 英文
  • 16 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
578 条 记 录,以下是101-110 订阅
排序:
3D object retrieval with semantic attributes  11
3D object retrieval with semantic attributes
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Gong, Boqing Liu, Jianzhuang Wang, Xiaogang Tang, Xiaoou Department of Information Engineering Chinese University of Hong Kong Hong Kong Department of Electronic Engineering Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China
Humans are capable of describing objects using attributes, such as "the object looks circular and is man-made". Motivated by these high-level descriptions, we build a user-friendly 3D object retrieval system... 详细信息
来源: 评论
Visual Compositional Learning for Human-Object Interaction Detection  16th
Visual Compositional Learning for Human-Object Interaction D...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论
Fast recovery of piled deformable objects using superquadrics
Fast recovery of piled deformable objects using superquadric...
收藏 引用
24th German Association for pattern recognition Symposium, DAGM 2002
作者: Katsoulas, Dimitrios Jaklič, Aleš Institute for Pattern Recognition and Image Processing University of Freiburg Georges-Koehler-Allee 52 FreiburgD-79110 Germany Computer Vision Laboratory University of Ljubljana Tržaška cesta 25 LjubljanaSI-1000 Slovenia
Fast robotic unloading of piled deformable box-like objects (e.g. box-like sacks), is undoubtedly of great importance to the industry. Existing systems although fast, can only deal with layered, neatly placed configur... 详细信息
来源: 评论
Feature Decoupled of Deep Mutual Information Maximization  2
Feature Decoupled of Deep Mutual Information Maximization
收藏 引用
2nd International Conference on Automation, Robotics and computer Engineering, ICARCE 2023
作者: He, Xing Peng, Changgen Wang, Lin Tan, Weijie Wang, Zifan State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China Guizhou Big Data Academy Guizhou University Guiyang China Guizhou Minzu University Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guiyang China Institute of Guizhou Aerospace Measuring and Testing Technology Guiyang China
In deep learning, supervised learning techniques usually require a large amount of expensive labeled data to train the network, and the feature representations extracted by the model usually mix multiple attributes, r... 详细信息
来源: 评论
Semantic cohesion model for phrase-based SMT
Semantic cohesion model for phrase-based SMT
收藏 引用
24th International Conference on Computational Linguistics, COLING 2012
作者: Feng, Minwei Sun, Weiwei Ney, Hermann Computer Science Department Human Language Technology and Pattern Recognition Group RWTH Aachen University Aachen Germany MOE Key Laboratory of Computational Linguistics Institute of Computer Science and Technology Peking University Beijing China
In this paper, we propose a novel semantic cohesion model. Our model utilizes the predicateargument structures as soft constraints and plays the role as a reordering model in the phrasebased statistical machine transl... 详细信息
来源: 评论
Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image recognition  16th
Attention-Driven Dynamic Graph Convolutional Network for Mul...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Ye, Jin He, Junjun Peng, Xiaojiang Wu, Wenhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China School of Biomedical Engineering the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occu... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Natural image matting based on image inpainting  2
Natural image matting based on image inpainting
收藏 引用
2nd International Conference on computer Graphics, Image and Virtualization, ICCGIV 2022
作者: Zhang, Yuan Tan, Mian Zhou, Zhulian Yang, Yuan Liang, Yihui Feng, Fujian Guizhou Minzu University Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guiyang550025 China University of Electronic Science and Technology China School of Computer Science Zhongshan528400 China
Deep image matting is a hot problem with applications in computer vision and image processing. It has been widely used in image composition, film production and video editing etc. The current matting method based on i... 详细信息
来源: 评论
Anomaly Handwritten Text Detection for Automatic Descriptive Answer Evaluation  11
Anomaly Handwritten Text Detection for Automatic Descriptive...
收藏 引用
11th International Conference on Computing and pattern recognition, ICCPR 2022
作者: Chatterjee, Nilanjana Shivakumara, Palaiahnaakote Pal, Umapada Lu, Tong Lu, Yue Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia National Key Lab for Novel Software Technology Nanjing University Nanjing China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China
Although there are advanced technologies for character recognition, automatic descriptive answer evaluation is an open challenge for the document image analysis community due to large diversified handwritten text and ... 详细信息
来源: 评论
Design of surrogate models in civil engineering by neural networks  9
Design of surrogate models in civil engineering by neural ne...
收藏 引用
9th South-East Europe Design Automation, computer Engineering, computer Networks and Social Media Conference, SEEDA-CECNSM 2024
作者: Drahy, Vojtech Marik, Radek Kalviainen, Heikki Czech Technical University in Prague Department of Computer Science Prague Czech Republic Czech Technical University in Prague Department of Telecommunication Engineering Prague Czech Republic Lappeenranta-Lahti University of Technology Lut Computer Vision and Pattern Recognition Laboratory Lappeenranta Finland
We present a task from the critical infrastructure field in materials engineering. We created a surrogate model for the bridge construction object to determine the material parameters' values. The work aims to use... 详细信息
来源: 评论