咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 279 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 570 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 392 篇 工学
    • 269 篇 计算机科学与技术...
    • 245 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 41 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 254 篇 理学
    • 101 篇 数学
    • 99 篇 物理学
    • 85 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 112 篇 管理学
    • 65 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 26 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 18 篇 training
  • 17 篇 pattern recognit...
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 14 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 benchmark testin...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 26 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 12 篇 xiamen key labor...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 547 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
570 条 记 录,以下是161-170 订阅
An Hybrid Attention-Based System for the Prediction of Facial Attributes  4th
An Hybrid Attention-Based System for the Prediction of Fac...
收藏 引用
4th International Workshop on Brain-Inspired Computing, BrainComp 2019
作者: Khellat-Kihel, Souad Sun, Zhenan Tistarelli, Massimo Computer Vision Laboratory University of Sassari Viale Italia 39 Sassari07100 Italy Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Room 1605 Intelligence Bulding 95 Zhongguancun East Road Beijing100190 China Computer Vision Laboratory Department of Biomedical Sciences and Information Technology University of Sassari Viale S. Pietro 43/b Sassari07100 Italy
Recent research on face analysis has demonstrated the richness of information embedded in feature vectors extracted from a deep convolutional neural network. Even though deep learning achieved a very high performance ... 详细信息
来源: 评论
Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
arXiv
收藏 引用
arXiv 2024年
作者: Lan, Zhibin Niu, Liqiang Meng, Fandong Zhou, Jie Zhang, Min Su, Jinsong School of Informatics Xiamen University China Pattern Recognition Center WeChat AI Tencent Inc China Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan Xiamen University Ministry of Culture and Tourism China Institute of Computer Science and Technology Soochow University China
In-image machine translation (IIMT) aims to translate an image containing texts in source language into an image containing translations in target language. In this regard, conventional cascaded methods suffer from is... 详细信息
来源: 评论
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Mult...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Jianbo Ma Chuanming Tang Fei Wu Can Zhao Jianlin Zhang Zhiyong Xu National Key Laboratory of Optical Field Manipulation Science and Technology Key Laboratory of Optical Engineering Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Pattern Recognition Lab Computer Science Department Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Key Laboratory of Optical Engineering Institute of Optics and Electronics Chengdu China
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision. Current MOT trackers rely on accurate object detection results and precise matching of t... 详细信息
来源: 评论
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Jianbo Tang, Chuanming Wu, Fei Zhao, Can Zhang, Jianlin Xu, Zhiyong National Key Laboratory of Optical Field Manipulation Science and Technology Key Laboratory of Optical Engineering Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Key Laboratory of Optical Engineering Institute of Optics and Electronics Chengdu China
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision. Current MOT trackers rely on accurate object detection results and precise matching of t... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
Unifying Perplexing Behaviors in Modified BP Attributions through Alignment Perspective
arXiv
收藏 引用
arXiv 2025年
作者: Zheng, Guanhua Sang, Jitao Xu, Changsheng The University of Science and Technology of China Hefei230026 China The School of Computer and Information Technology The Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China The National Lab of Pattern Recognition Institute of Automation CAS Beijing100190 China The University of Chinese Academy of Sciences China
Attributions aim to identify input pixels that are relevant to the decision-making process. A popular approach involves using modified backpropagation (BP) rules to reverse decisions, which improves interpretability c...
来源: 评论
A Semantic Segmentation Method of Buildings in Remote Sensing Image Based on Improved UNet  2
A Semantic Segmentation Method of Buildings in Remote Sensin...
收藏 引用
2nd International Conference on Signal Image Processing and Communication, ICSIPC 2022
作者: Li, Zhongyu Liu, Yang Kuang, Yin Wang, Huajun Liu, Cheng College of Computer Science Chengdu Normal University Chengdu611130 China College of Geophysics Chengdu University of Technology Chengdu610059 China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu610106 China Artificial Intelligence Key Laboratory of Sichuan Province Zigong643000 China Key Laboratory of interior Layout optimization and Security Institutions of Higher Education of Sichuan Province Chengdu Normal University Sichuan Chengdu611130 China College of Movie and Media Sichuan Normal University Chengdu610066 China
Aiming at the problem of model instability and overfitting of deep neural networks with the deepening of the number of network layers, the current mainstream method is to use batch normalization (BN) to alleviate them... 详细信息
来源: 评论
DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial Attention Detection
arXiv
收藏 引用
arXiv 2023年
作者: Fan, Cunhang Zhang, Hongyu Huang, Wei Xue, Jun Tao, Jianhua Yi, Jiangyan Lv, Zhao Wu, Xiaopei The Anhui Province Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China The National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Department of Automation Tsinghua University Beijing100190 China
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches prima... 详细信息
来源: 评论
Local Neighbor Propagation on Graphs for Robust Feature Matching
SSRN
收藏 引用
SSRN 2023年
作者: Guo, Hanlin Xiao, Guobao Su, Lumei Zhou, Jiaxing Wang, Dahan Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control School of Electrical Engineering and Automation Xiamen University of Technology China Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Information Science and Engineering Xiamen University China College of Computer and Control Engineering Minjiang University China Fujian Key Laboratory of Pattern Recognition and Image Understanding School of Computer and Information Engineering Xiamen University of Technology China
Establishing reliable correspondences between two sets of feature points is a critical preprocessing step in many computer vision and pattern recognition tasks. In this paper, we propose a novel robust Local Neighbor ... 详细信息
来源: 评论
Riemannian Self-Attention Mechanism for SPD Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Rui Wu, Xiao-Jun Li, Hui Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Symmetric positive definite (SPD) matrix has been demonstrated to be an effective feature descriptor in many scientific areas, as it can encode spatiotemporal statistics of the data adequately on a curved Riemannian m... 详细信息
来源: 评论