咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 283 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 395 篇 工学
    • 271 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 255 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 85 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 112 篇 管理学
    • 65 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 13 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 11 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 555 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
579 条 记 录,以下是441-450 订阅
排序:
Shape driven kernel adaptation in Convolutional Neural Network for robust facial trait recognition
Shape driven kernel adaptation in Convolutional Neural Netwo...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Shaoxin Li Junliang Xing Zhiheng Niu Shiguang Shan Shuicheng Yan Department of Electrical and Computer Engineering National University of Singapore Singapore Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) Institute of Computing Technology CAS Beijing China National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China
One key challenge of facial trait recognition is the large non-rigid appearance variations due to some irrelevant real world factors, such as viewpoint and expression changes. In this paper, we explore how the shape i... 详细信息
来源: 评论
DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial Attention Detection
arXiv
收藏 引用
arXiv 2023年
作者: Fan, Cunhang Zhang, Hongyu Huang, Wei Xue, Jun Tao, Jianhua Yi, Jiangyan Lv, Zhao Wu, Xiaopei The Anhui Province Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China The National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Department of Automation Tsinghua University Beijing100190 China
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment. Although EEG-based AAD methods have shown promising results in recent years, current approaches prima... 详细信息
来源: 评论
Multiple domain experts collaborative learning: Multi-source domain generalization for person re-identification
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Shijie Zhu, Feng Chen, Dapeng Zhao, Rui Chen, Haobin Zhu, Jinguo Tang, Shixiang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China SenseTime Group Limited Shanghai AI Lab Shanghai China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Recent years have witnessed significant progress in person re-identification (ReID). However, current ReID approaches still suffer from considerable performance degradation when unseen testing domains exhibit differen... 详细信息
来源: 评论
LSSLP – Local structure sensitive label propagation
收藏 引用
Information Sciences 2016年 332卷 19-32页
作者: Zhenfeng Zhu Jian Cheng Yao Zhao Jieping Ye Institute of Information Science Beijing Jiaotong University Beijing 100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing 100044 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences (CAS) 100190 China Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI 48109-2218 USA
Label propagation is an approach to iteratively spread the prior state of label confidence associated with each of samples to its neighbors until achieving a global convergence state. Such process has been shown to ho...
来源: 评论
Local Neighbor Propagation on Graphs for Robust Feature Matching
SSRN
收藏 引用
SSRN 2023年
作者: Guo, Hanlin Xiao, Guobao Su, Lumei Zhou, Jiaxing Wang, Dahan Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control School of Electrical Engineering and Automation Xiamen University of Technology China Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Information Science and Engineering Xiamen University China College of Computer and Control Engineering Minjiang University China Fujian Key Laboratory of Pattern Recognition and Image Understanding School of Computer and Information Engineering Xiamen University of Technology China
Establishing reliable correspondences between two sets of feature points is a critical preprocessing step in many computer vision and pattern recognition tasks. In this paper, we propose a novel robust Local Neighbor ... 详细信息
来源: 评论
Riemannian Self-Attention Mechanism for SPD Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Rui Wu, Xiao-Jun Li, Hui Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Symmetric positive definite (SPD) matrix has been demonstrated to be an effective feature descriptor in many scientific areas, as it can encode spatiotemporal statistics of the data adequately on a curved Riemannian m... 详细信息
来源: 评论
Let's Play Music: Audio-Driven Performance Video Generation
Let's Play Music: Audio-Driven Performance Video Generation
收藏 引用
International Conference on pattern recognition
作者: Hao Zhu Yi Li Feixia Zhu Aihua Zheng Ran He Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) CASIA Beijing China Center for Excellence in Brain Science and Intelligence Technology CAS Beijing China Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University
We propose a new task named Audio-driven Performance Video Generation (APVG), which aims to synthesize the video of a person playing a certain instrument guided by a given music audio clip. It is a challenging task to... 详细信息
来源: 评论
Feature refinement: An expression-specific feature learning and fusion method for micro-expression recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ling Mao, Qirong Huang, Xiaohua Zhang, Feifei Zhang, Zhihong School of Computer Science and Communication Engineering Jiangsu University ZhenjiangJiangsu212013 China School of Computer Engineering Nanjing Institute of Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Xiamen University Xiamen China Center for Machine Vision and Signal Analysis University of Oulu Finland
Micro-Expression recognition has become challenging, as it is extremely difficult to extract the subtle facial changes of micro-expressions. Recently, several approaches proposed several expression-shared features alg... 详细信息
来源: 评论
A Novel Ordinal Regression Method with Minimum Class Variance Support Vector Machine
A Novel Ordinal Regression Method with Minimum Class Varianc...
收藏 引用
2015 International Conference on Materials Engineering and Information Technology Applications(MEITA 2015)
作者: Jinrong Hu Xiaoming Wang Zengxi Huang School of Computer and Soft Engineering Xihua University Key Laboratory of Pattern Recognition and Intelligent Information Processing Chengdu University
In the paper, we propose a novel ordinal regression method called minimum class variance support vector ordinal regression(MCVSVOR). MCVSVOR is derived from minimum class variance support vector machine(MCVSVM) which ... 详细信息
来源: 评论
Fine-Grained Topography and Modularity of the Macaque Frontal Pole Cortex Revealed by Anatomical Connectivity Profiles
收藏 引用
Neuroscience Bulletin 2020年 第12期36卷 1454-1473页
作者: Bin He Long Cao Xiaoluan Xia Baogui Zhang Dan Zhang Bo You Lingzhong Fan Tianzi Jiang School of Mechanical and Power Engineering Harbin University of Science and TechnologyHarbin 150080China Brainnetome Center Institute of AutomationChinese Academy of SciencesBeijing 100190China National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of Sciences(CAS)Beijing 100190China Center for Excellence in Brain Science and Intelligence Technology Institute of AutomationCASBeijing 100190China Key Laboratory for Neuroinformation of the Ministry of Education School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengdu 610054China The Queensland Brain Institute University of QueenslandBrisbaneQLD 4072Australia University of CAS Beijing 100049China College of Information and Computer Taiyuan University of TechnologyTaiyuan 030600China Chinese Institute for Brain Research Beijing 102206China Core Facility Center of Biomedical AnalysisTsinghua UniversityBeijing 100084China
The frontal pole cortex(FPC)plays key roles in various higher-order functions and is highly developed in non-human *** essential missing piece of information is the detailed anatomical connections for finer parcellati... 详细信息
来源: 评论