咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 283 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 398 篇 工学
    • 274 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 107 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 控制科学与工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 256 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 86 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 67 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 19 篇 pattern recognit...
  • 19 篇 semantics
  • 18 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 557 篇 英文
  • 16 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
579 条 记 录,以下是451-460 订阅
排序:
DSA image registration based on multiscale Gabor filters and mutual information
DSA image registration based on multiscale Gabor filters and...
收藏 引用
International Conference on Information and Automation (ICIA)
作者: Zhiguo Cao Xiaoxiao Liu Bo Peng Yiu-Sang Moon Key Laboratory of Ministry of Education for Image Processing and Intelligent Control Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology Wuhan China Department of Computer Science and Engineering Chinese University of Hong Kong New Territories Hong Kong China
In clinical practice, digital subtraction angiography (DSA) is a powerful technique for the visualization of blood vessels in X-ray image sequences. Different with traditional DSA image registration processes, in our ... 详细信息
来源: 评论
Local Gradient Difference Features for Classification of 2D-3D Natural Scene Text Images
Local Gradient Difference Features for Classification of 2D-...
收藏 引用
International Conference on pattern recognition
作者: Lokesh Nandanwar Palaiahnakote Shivakumara Ramachandra Raghavendra Tong Lu Umapada Pal Daniel Lopresti Nor Badrul Anuar Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia Faculty of Information Technology and Electrical Engineering IIK NTNU Norway National Key Lab for Novel Software Technology Nanjing University Nanjing China Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science & Engineering Lehigh University Bethlehem PA USA
Methods developed for normal 2D text detection do not work well for text that is rendered using decorative, 3D effects, etc. This paper proposes a new method for classification of 2D and 3D natural scene text images s... 详细信息
来源: 评论
Identity-free Artificial Emotional Intelligence via Micro-Gesture Understanding
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Rong Liu, Xin Xing, Bohao Yu, Zitong Schuller, Bjorn W. Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory School of Engineering Sciences Lappeenranta-Lahti University of Technology LUT Finland School of Computing and Information Technology Great Bay University China Group on Language Audio & Music Imperial College London United Kingdom School of Medicine and Health Technical University of Munich Germany
In this work, we focus on a special group of human body language — the micro-gesture (MG), which differs from the range of ordinary illustrative gestures in that they are not intentional behaviors performed to convey... 详细信息
来源: 评论
Differentiable neural architecture learning for efficient neural network design
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Automated neural network design has received ever-increasing attention with the evolution of deep convolutional neural networks (CNNs), especially involving their deployment on embedded and mobile platforms. One of th... 详细信息
来源: 评论
FGCLR: An Effective Graph Contrastive Learning For Recommendation
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2024年 第1期9卷 289-299页
作者: Wang, Hua-Wei Guo, Yi-Jing Weng, Wei Wu, Liu-Xi Yan, Zhong-Qi Key Laboratory of Intelligent Manufacturing and Industrial Internet Technology Fujian Province University Xiamen University Tan Kah Kee College Zhangzhou 363105 China College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China Xiamen University Tan Kah Kee College Zhangzhou 363105 China College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China
Graph contrastive learning(GCL) has become a prevalent technique for graph-based recommendation. Most GCL-based methods perform stochastic augmentation on the user-item interaction graph which may change the intrinsic... 详细信息
来源: 评论
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rui Wu, Xiao-Jun Chen, Ziheng Xu, Tianyang Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom School of Artificial Intelligence and Computer Science Jiangnan University China
Image set-based visual classification methods have achieved remarkable performance, via characterising the image set in terms of a non-singular covariance matrix on a symmetric positive definite (SPD) manifold. To ada... 详细信息
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
J-Measure Based Pruning for Advancing Classification Performance of Information Entropy Based Rule Generation
J-Measure Based Pruning for Advancing Classification Perform...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Han Liu Mihaela Cocea Weili Ding School of Computer Science and Informatics Cardiff University Queen’s Buildings 5 The Parade Cardiff United Kingdom School of computing University of Portsmouth Buckingham Building Lion Terrace Portsmouth United Kingdom Laboratory of Pattern Recognition and Intelligent Systems Key Laboratory of Industrial Computer Control Engineering of Heibei Provience Yanshan University Qinghuangdao China
Learning of classification rules is a popular approach of machine learning, which can be achieved through two strategies, namely divide-and-conquer and separate-and-conquer. The former is aimed at generating rules in ... 详细信息
来源: 评论
Understanding Translationese in Cross-Lingual Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jiaan Meng, Fandong Liang, Yunlong Zhang, Tingyi Xu, Jiarong Li, Zhixu Zhou, Jie Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Pattern Recognition Center WeChat AI Tencent Inc China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China School of Management Fudan University Shanghai China
Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language ... 详细信息
来源: 评论