咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 283 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 395 篇 工学
    • 271 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 255 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 85 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 112 篇 管理学
    • 65 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 13 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 11 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 555 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
579 条 记 录,以下是461-470 订阅
Understanding Translationese in Cross-Lingual Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jiaan Meng, Fandong Liang, Yunlong Zhang, Tingyi Xu, Jiarong Li, Zhixu Zhou, Jie Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Pattern Recognition Center WeChat AI Tencent Inc China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China School of Management Fudan University Shanghai China
Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language ... 详细信息
来源: 评论
RBP-Former: Joint Prediction of RNA-protein Binding Sites on Full-length RNA Transcripts for Multiple RBPs
RBP-Former: Joint Prediction of RNA-protein Binding Sites on...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Yichong Li Xiaojian Liu Fan Cheng Xiaoyong Pan Yang Yang Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China
RNA-binding proteins (RBPs) are essential for gene expression, and the complex RNA-protein interaction mechanisms require analysis of global RNA information. Therefore, accurate prediction of RBP binding sites on full... 详细信息
来源: 评论
Road Segmentation via Iterative Deep Analysis
Road Segmentation via Iterative Deep Analysis
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Xiang Chen Yu Qiao Student at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Address: 1068 Xueyuan Avenue Shenzhen University Town Shenzhen P.R.China Researcher at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Address: 1068 Xueyuan Avenue Shenzhen University Town Shenzhen P.R.China
Nowadays, people are increasingly concerned about the safety of traffic systems. Road segmentation and recognition is a fundamental problem in perceiving traffic environments and serve as the basis for self-driving ca... 详细信息
来源: 评论
An Optimizing Parameters and Feature Selection in SVM Based on Improved Cockroach Swarm Optimization  16th
An Optimizing Parameters and Feature Selection in SVM Based ...
收藏 引用
16th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2020 in conjunction with the 13th International Conference on Frontiers of Information Technology, Applications and Tools, FITAT 2020
作者: Nguyen, Trong-The Yu, Jie Nguyen, Thi-Thanh-Tan Lai, Quoc-Anh Ngo, Truong-Giang Dao, Thi-Kien Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China College of Mechanical and Automotive Engineering Fujian University of Technology Fuzhou China Information Technology Faculty Electric Power University Hanoi Viet Nam Department of Pattern Recognition & Image Processing Institute of Information Technology Vietnam Academy of Science and Technology Hanoi Viet Nam Faculty of Computer Science and Engineering Thuyloi University 175 Tay Son Dong Da Hanoi Viet Nam
This study improves a classifier of the support vector machine (SVM) by optimizing its parameters by adjusting cockroach swarm optimization (CSO). Classification system design includes data inputs, pre-process, and cl... 详细信息
来源: 评论
A glass image classification method based on multi-feature fusion
A glass image classification method based on multi-feature f...
收藏 引用
International Conference on Wavelet Analysis and pattern recognition (ICWAPR)
作者: Liang Zhang Jing Wen Sheng-Zhou Xu Hao-Yang Xing Yu Zhu Heng-Xin Chen College of Computer Science Chongqing University Chongqing China Key Laboratory of Pattern Recognition and Intelligent Chengdu University China School of Computer Science South-central University For Nationalities WuHan China Magnetic Resonance Imaging Research Centre Huaxi Hospital Chengdu Sichuan China Chongqing University Chongqing Sichuan CN
In this work, a new glass classification method is proposed. Firstly, images are enhanced by image preprocessing. Secondly, a series of glass features including shape and texture features are proposed. Finally, we emp... 详细信息
来源: 评论
Talking Face Generation via Learning Semantic and Temporal Synchronous Landmarks
Talking Face Generation via Learning Semantic and Temporal S...
收藏 引用
International Conference on pattern recognition
作者: Aihua Zheng Feixia Zhu Hao Zhu Mandi Luo Ran He Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Heifei China Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition (NLPR) CASIA Beijing China Center for Excellence in Brain Science and Intelligence Technology CAS Beijing China
Given a speech clip and facial image, the goal of talking face generation is to synthesize a talking face video with accurate mouth synchronization and natural face motion. Recent progress has proven the effectiveness... 详细信息
来源: 评论
Inconsistency Distillation For Consistency:Enhancing Multi-View Clustering via Mutual Contrastive Teacher-Student Leaning
Inconsistency Distillation For Consistency:Enhancing Multi-V...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Dunqiang Liu Shu-Juan Peng Xin Liu Lei Zhu Zhen Cui Taihao Li Dept. of Comput. Sci. & Fujian Key Lab. of Big Data Intelligence and Security Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Computer Vision and Pattern Recognition Huaqiao University Xiamen China Key Lab. of Computer Vision and Machine Learning (Huaqiao University) Fujian Province University Xiamen China School of Information Sci. and Eng. Shandong Normal University Jinan China School of Computer Sci. and Eng. Nanjing University of Science and Technology Nanjing China
Multi-view clustering has attracted more attention recently since many real-world data are comprised of different representations or views. Recent multi-view clustering works mainly exploit the instance consistency to... 详细信息
来源: 评论
A Simple yet Effective Network based on vision Transformer for Camouflaged Object and Salient Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Hao, Chao Yu, Zitong Liu, Xin Xu, Jun Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China The School of Computing and Information Technology Great Bay University Dongguan523000 China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland The School of Statistics and Data Science Nankai University Tianjin300072 China
Camouflaged object detection (COD) and salient object detection (SOD) are two distinct yet closely-related computer vision tasks widely studied during the past decades. Though sharing the same purpose of segmenting an... 详细信息
来源: 评论
When Face recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face recognition
When Face Recognition Meets with Deep Learning: An Evaluatio...
收藏 引用
International Conference on computer vision Workshops (ICCV Workshops)
作者: Guosheng Hu Yongxin Yang Dong Yi Josef Kittler William Christmas Stan Z. Li Timothy Hospedales Centre for Vision Speech and Signal Processing University of Surrey UK Indicates equal contribution LEAR team Inria Grenoble Rhone-Alpes Montbonnot France Electronic Engineering and Computer Science Queen Mary University of London UK Chinese Academy of Sciences Center for Biometrics and Security Research & National Laboratory of Pattern Recognition China
Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good'... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论