咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 282 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 578 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 398 篇 工学
    • 274 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 107 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 控制科学与工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 256 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 86 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 67 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 19 篇 pattern recognit...
  • 19 篇 semantics
  • 18 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 556 篇 英文
  • 16 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
578 条 记 录,以下是491-500 订阅
排序:
STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Jianbo Tang, Chuanming Wu, Fei Zhao, Can Zhang, Jianlin Xu, Zhiyong National Key Laboratory of Optical Field Manipulation Science and Technology Key Laboratory of Optical Engineering Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Institute of Optics and Electronics University of Chinese Academy of Sciences Chengdu China Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Key Laboratory of Optical Engineering Institute of Optics and Electronics Chengdu China
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision. Current MOT trackers rely on accurate object detection results and precise matching of t... 详细信息
来源: 评论
Hybrid Data-Free Knowledge Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Tang, Jialiang Chen, Shuo Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Center for Advanced Intelligence Project RIKEN Japan Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati... 详细信息
来源: 评论
A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yuanxin Meng, Fandong Lin, Zheng Li, Jiangnan Fu, Peng Cao, Yanan Wang, Weiping Zhou, Jie Institute of Information Engineering Chinese Academy of Sciences China MOE Key Laboratory of Computational Linguistics Peking University China School of Computer Science Peking University China School of Cyber Security University of Chinese Academy of Sciences China Pattern Recognition Center WeChat AI Tencent Inc China
Despite the remarkable success of pre-trained language models (PLMs), they still face two challenges: First, large-scale PLMs are inefficient in terms of memory footprint and computation. Second, on the downstream tas... 详细信息
来源: 评论
From Mimicking to Integrating: Knowledge Integration for Pre-Trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Li, Lei Lin, Yankai Ren, Xuancheng Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu MOE Key Lab of Computational Linguistics School of Computer Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tsinghua University China Pattern Recognition Center WeChat AI Tencent Inc. China
Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse pa... 详细信息
来源: 评论
Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xuannan Cui, Xing Li, Peipei Li, Zekun Huang, Huaibo Xia, Shuhan Zhang, Miaoxuan Zou, Yueying He, Ran School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China School of Computer Science University of California Santa Barbara United States State Key Laboratory of Multimodal Artificial Intelligence Systems CASIA New Laboratory of Pattern Recognition CASIA School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China
The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these m... 详细信息
来源: 评论
A novel TSK fuzzy system incorporating multiview collaborative transfer learning for personalized epileptic EEG detection
arXiv
收藏 引用
arXiv 2021年
作者: Li, Andong Deng, Zhaohong Lou, Qiongdan Choi, Kup-Sze Shen, Hongbin Wang, Shitong School of Artificial Intelligence and Computer Science Jiangnan University Jiangsu Key Laboratory of Digital Design and Software Technology Wuxi214122 China Centre for Smart Health Hong Kong Polytechnic University Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai200240 China
—In clinical practice, electroencephalography (EEG) plays an important role in the diagnosis of epilepsy. EEG-based computer-aided diagnosis of epilepsy can greatly improve the accuracy of epilepsy detection while re... 详细信息
来源: 评论
MFHI: Taking Modality-free Human Identification as Zero-shot Learning
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Zhizhe Zhang, Xingxing Zhu, Zhenfeng Zheng, Shuai Zhao, Yao Cheng, Jian Institute of Information Science Beijing Jiaotong University Beijing100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing Jiaotong University Beijing100044 China Department of Computer Science and Technology Tsinghua University Beijing100084 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China
Human identification is an important topic in event detection, person tracking, and public security. There have been numerous methods proposed for human identification, such as face identification, person re-identific... 详细信息
来源: 评论
Similarity-based Attention Embedding Approach for Attributed Graph Clustering
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2022年 第4期7卷 848-861页
作者: Weng, Wei Li, Tong Liao, Jian-Chao Guo, Feng Chen, Fen Wei, Bo-Wen College of Computer and Information Engineering Xiamen University of Technology Fujian Key Laboratory of Pattern Recognition and Image Understanding Xiamen361024 China College of Computer and Information Engineering Xiamen University of Technology Xiamen361024 China Fujian Newland Auto-ID Tech. Co. Ltd Fuzhou350015 China Xiamen Fuyun Information Tech. Co. Ltd Xiamen361008 China
Graph clustering is a fundamental method for studying complex networks. Some existing approaches focus on the graph data without attributed information. However, graph data in the real world generally have attribute i... 详细信息
来源: 评论
Learning Flexible Binary Code for Linear Projection Based Hashing with Random Forest
Learning Flexible Binary Code for Linear Projection Based Ha...
收藏 引用
International Conference on pattern recognition
作者: Shuze Du Wei Zhang Shifeng Chen Yafei Wen Chengdu Institute of Computer Applications Chinese Academy of Sciences Sichuan China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Media Lab. Huawei Technologies Co. Ltd. China Shenzhen Key Lab of Computer Vision and Pattern Recognition Chinese Academy of Sciences Guangdong China The Chinese University of Hong Kong Hong Kong University of Chinese Academy of Sciences Beijing China
Existing linear projection based hashing methods have witnessed many progresses in finding the approximate nearest neighbor(s) of a given query. They perform well when using a short code. But their code length depends... 详细信息
来源: 评论
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreferen...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Wang, Xiaozhi Chen, Yulin Ding, Ning Peng, Hao Wang, Zimu Lin, Yankai Han, Xu Hou, Lei Li, Juanzi Liu, Zhiyuan Li, Peng Zhou, Jie Department of Computer Science and Technology BNRist Tsinghua University Beijing China Shenzhen International Graduate School Tsinghua University Beijing China THU-Siemens Ltd. China Joint Research Center for Industrial Intelligence and IoT Tsinghua University Beijing China Tsinghua University Beijing China Xi'an Jiaotong-Liverpool University Suzhou China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit... 详细信息
来源: 评论