咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 283 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 395 篇 工学
    • 271 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 255 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 85 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 112 篇 管理学
    • 65 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 13 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 11 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 555 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
579 条 记 录,以下是501-510 订阅
排序:
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreferen...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Wang, Xiaozhi Chen, Yulin Ding, Ning Peng, Hao Wang, Zimu Lin, Yankai Han, Xu Hou, Lei Li, Juanzi Liu, Zhiyuan Li, Peng Zhou, Jie Department of Computer Science and Technology BNRist Tsinghua University Beijing China Shenzhen International Graduate School Tsinghua University Beijing China THU-Siemens Ltd. China Joint Research Center for Industrial Intelligence and IoT Tsinghua University Beijing China Tsinghua University Beijing China Xi'an Jiaotong-Liverpool University Suzhou China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit... 详细信息
来源: 评论
CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guogong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Macau University of Science and Technology Macau China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Universitat de Barcelona Computer Vision Center Barcelona Catalonia Instituto Nacional de Astrofsica Ptica y Electrnica Puebla72840 Mexico
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Text Detection and recognition — RRC-MLT-2019
ICDAR2019 Robust Reading Challenge on Multi-lingual Scene Te...
收藏 引用
International Conference on Document Analysis and recognition
作者: Nibal Nayef Yash Patel Michal Busta Pinaki Nath Chowdhury Dimosthenis Karatzas Wafa Khlif Jiri Matas Umapada Pal Jean-Christophe Burie Cheng-lin Liu Jean-Marc Ogier no affiliation The Robotics Institute Carnegie Mellon Universiry Pittsburgh USA Department of Cybernetics Czech Technical University Prague Czech Republic CVPR unit Indian Statistical Institute India Computer Vision Center Universitat Autònoma de Barcelona Spain L3i Laboratory University of La Rochelle France National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
A generalization theory based on independent and task-identically distributed assumption
arXiv
收藏 引用
arXiv 2019年
作者: Zheng, Guanhua Sang, Jitao Li, Houqiang Yu, Jian Xu, Changsheng University of Science and Technology of China School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Hefei230026 China National Lab of Pattern Recognition Institute of Automation CAS Beijing100190 China University of Chinese Academy of Sciences
—Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumpt... 详细信息
来源: 评论
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论
A close-up detection method for movies
A close-up detection method for movies
收藏 引用
IEEE International Conference on Image Processing
作者: Huiying Liu Min Xu Qingming Huang Jesse S. Jin Shuqiang Jiang Changsheng Xu Chinese Academy of Sciences Beijing China Key Laboratory of Intelligence Information Process. Institute of Computer Technology Chinese Academy and Sciences Beijing China Faculty of Engineering and Information Technology Sydney University of Technology Sydney Australia School of Design Communication and IT University of Newcastle Australia National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
Close-up (CU) is a photographic technique which tightly frames a person or an object. In movies, it is applied to guide audience attention and to evoke audience emotion. In this paper, we detect face CU, object CU, an... 详细信息
来源: 评论
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论
ICDAR2019 Robust reading challenge on multi-lingual scene text detection and recognition – RRC-MLT-2019
arXiv
收藏 引用
arXiv 2019年
作者: Nayef, Nibal Patel, Yash Busta, Michal Chowdhury, Pinaki Nath Karatzas, Dimosthenis Khlif, Wafa Matas, Jiri Pal, Umapada Burie, Jean-Christophe Liu, Cheng-lin Ogier, Jean-Marc L3i Laboratory University of La Rochelle France Computer Vision Center Universitat Autònoma de Barcelona Spain CVPR unit Indian Statistical Institute India Robotics Institute Carnegie Mellon Universiry Pittsburgh United States Center for Machine Perception Department of Cybernetics Czech Technical University Prague Czech Republic National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论