咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 283 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 579 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 395 篇 工学
    • 271 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 106 篇 信息与通信工程
    • 74 篇 生物工程
    • 69 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 控制科学与工程
    • 41 篇 生物医学工程(可授...
    • 25 篇 化学工程与技术
    • 22 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 9 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 255 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 85 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 112 篇 管理学
    • 65 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 22 篇 convolution
  • 20 篇 semantics
  • 19 篇 pattern recognit...
  • 19 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 9 篇 benchmark testin...
  • 8 篇 object detection

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 16 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 14 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 60 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 13 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 11 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 555 篇 英文
  • 16 篇 其他
  • 9 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
579 条 记 录,以下是531-540 订阅
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Graph Convolution Based Cross-Network Multi-Scale Feature Fusion for Deep Vessel Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Gangming Liang, Kongming Pan, Chengwei Zhang, Fandong Wu, Xianpeng Hu, Xinyang Yu, Yizhou The Department of Computer Science The University of Hong Kong Hong Kong Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Institute of Artificial Intelligence Beihang University Beijing China The AI Lab Deepwise Healthcare Beijing China Department of Cardiology of the Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou China Key Laboratory of Cardiovascular of Zhejiang Province Hangzhou China
Vessel segmentation is widely used to help with vascular disease diagnosis. Vessels reconstructed using existing methods are often not sufficiently accurate to meet clinical use standards. This is because 3D vessel st... 详细信息
来源: 评论
Natural Image Matting Based on Surrogate Model
SSRN
收藏 引用
SSRN 2022年
作者: Liang, Yihui Gou, Hongshan Feng, Fujian Liu, Guisong Huang, Han School of Computer Science Zhongshan Institute University of Electronic Science and Technology of China Zhongshan528400 China Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang550025 China School of Economic Information Engineering Southwestern University of Finance and Economics Chengdu610000 China Laboratory of Intelligent Algorithms and Intelligent Software School of Software Engineering South China University of Technology Guangzhou510006 China
Image matting is important in digital image processing. The pixel pair optimization-based methods are some of the image matting methods that have distinct advantages in spatially disconnected foreground. However, they... 详细信息
来源: 评论
WHEN TO TRUST AGGREGATED GRADIENTS: ADDRESSING NEGATIVE CLIENT SAMPLING IN FEDERATED LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Wenkai Lin, Yankai Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu Center for Data Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Shanghai AI Lab China Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc. China MOE Key Lab of Computational Linguistics School of Computer Science Peking University China
Federated Learning has become a widely-used framework which allows learning a global model on decentralized local datasets under the condition of protecting local data privacy. However, federated learning faces severe... 详细信息
来源: 评论
RETRACTED ARTICLE: Improved cuckoo search algorithm using dimensional entropy gain
收藏 引用
Neural Computing and Applications 2014年 第3期26卷 745-745页
作者: Qian Zhang Lin Wang Jun Cheng Renlong Pan Pattern Recognition and Intelligent Systems Key Laboratory of Guizhou Guiyang China School of Computer Science and Engineering of Guizhou Minzu University Guiyang China
来源: 评论
Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Wan, Xujie Li, Wenjie Gao, Guangwei Lu, Huimin Yang, Jian Lin, Chia-Wen The Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China The School of Automation Southeast University Nanjing210096 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale feat... 详细信息
来源: 评论
3D RoI-aware U-net for accurate and efficient colorectal tumor segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Yi-Jie Dou, Qi Wang, Zi-Xian Liu, Li-Zhi Jin, Ying Li, Chao-Feng Wang, Lisheng Chen, Hao Xu, Rui-Hua Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University China Imsight Medical Technology Co. Ltd. China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labo... 详细信息
来源: 评论
ChaLearn looking at people: IsoGD and ConGD large-scale RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2019年
作者: Wan, Jun Lin, Chi Wen, Longyin Li, Yunan Miao, Qiguang Escalera, Sergio Anbarjafari, Gholamreza Guyon, Isabelle Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China JD Finance Mountain ViewCA United States University of Southern California Los AngelesCA90089-0911 United States School of Computer Science and Technology Xidian University & Xi'an Key Laboratory of Big Data and Intelligent Vision 2nd South Taibai Road Xi'an710071 China Universitat de Barcelona Computer Vision Center Spain iCV Lab Institute of Technology University of Tartu Estonia Faculty of Engineering Hasan Kalyoncu University Gaziantep Turkey Institute of Digital Technologies Loughborough University London United Kingdom ChaLearn United States University Paris-Saclay France institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on pattern recognition (ICPR) 2016 and International Conference on computer V... 详细信息
来源: 评论
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
Multi-Unit Floor Plan recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
arXiv
收藏 引用
arXiv 2024年
作者: Kratochvila, Lukas de Jong, Gijs Arkesteijn, Monique Bilík, Šimon Zemčík, Tomáš Horak, Karel Rellermeyer, Jan S. Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Department of Software Technology Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Delft Netherlands Department of Management in the Built Environment Faculty of Architecture and the Built Environment TU Delft Delft Netherlands Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Dependable and Scalable Software Systems Institute of Systems Engineering Faculty of Electrical Engineering and Computer Science Leibniz University Hannover Hannover Germany
Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and... 详细信息
来源: 评论