咨询与建议

限定检索结果

文献类型

  • 290 篇 会议
  • 282 篇 期刊文献
  • 6 册 图书

馆藏范围

  • 578 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 398 篇 工学
    • 274 篇 计算机科学与技术...
    • 248 篇 软件工程
    • 107 篇 信息与通信工程
    • 75 篇 生物工程
    • 70 篇 光学工程
    • 48 篇 机械工程
    • 42 篇 生物医学工程(可授...
    • 41 篇 控制科学与工程
    • 25 篇 电气工程
    • 25 篇 化学工程与技术
    • 17 篇 电子科学与技术(可...
    • 13 篇 仪器科学与技术
    • 10 篇 建筑学
    • 10 篇 交通运输工程
    • 8 篇 安全科学与工程
    • 7 篇 土木工程
  • 256 篇 理学
    • 101 篇 数学
    • 100 篇 物理学
    • 86 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 25 篇 化学
    • 14 篇 系统科学
  • 114 篇 管理学
    • 67 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 5 篇 艺术学
  • 4 篇 教育学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 27 篇 feature extracti...
  • 25 篇 computer vision
  • 21 篇 convolution
  • 19 篇 pattern recognit...
  • 19 篇 semantics
  • 18 篇 training
  • 16 篇 image segmentati...
  • 16 篇 face recognition
  • 15 篇 image reconstruc...
  • 13 篇 image edge detec...
  • 12 篇 deep learning
  • 12 篇 machine learning
  • 11 篇 pixels
  • 10 篇 visualization
  • 10 篇 face
  • 10 篇 shape
  • 9 篇 generative adver...
  • 9 篇 computational mo...
  • 8 篇 object detection
  • 8 篇 support vector m...

机构

  • 46 篇 university of ch...
  • 40 篇 shenzhen key lab...
  • 32 篇 computer vision ...
  • 31 篇 national key lab...
  • 27 篇 national laborat...
  • 26 篇 shenzhen key lab...
  • 24 篇 faculty of compu...
  • 23 篇 fujian key labor...
  • 21 篇 siat branch shen...
  • 19 篇 shanghai ai labo...
  • 18 篇 school of comput...
  • 17 篇 sensetime resear...
  • 16 篇 shenzhen key lab...
  • 13 篇 xiamen key labor...
  • 13 篇 pattern recognit...
  • 12 篇 institute of ima...
  • 11 篇 college of compu...
  • 11 篇 pattern recognit...
  • 11 篇 shanghai artific...
  • 10 篇 department of in...

作者

  • 61 篇 qiao yu
  • 27 篇 yu qiao
  • 27 篇 dong chao
  • 22 篇 zhou jie
  • 21 篇 umapada pal
  • 20 篇 liu xin
  • 20 篇 wang da-han
  • 20 篇 pal umapada
  • 17 篇 wang yali
  • 17 篇 tong lu
  • 17 篇 palaiahnakote sh...
  • 17 篇 lu tong
  • 16 篇 shivakumara pala...
  • 14 篇 meng fandong
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 12 篇 sun xu
  • 10 篇 he junjun
  • 10 篇 wu xiao-jun
  • 10 篇 chen shifeng

语言

  • 556 篇 英文
  • 16 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory for Computer Vision and Pattern Recognition"
578 条 记 录,以下是551-560 订阅
排序:
Multi-View Partial (MVP) Point Cloud Challenge 2021 on Completion and Registration: Methods and Results
arXiv
收藏 引用
arXiv 2021年
作者: Pan, Liang Wu, Tong Cai, Zhongang Liu, Ziwei Yu, Xumin Rao, Yongming Lu, Jiwen Zhou, Jie Xu, Mingye Luo, Xiaoyuan Fu, Kexue Gao, Peng Wang, Manning Wang, Yali Qiao, Yu Zhou, Junsheng Wen, Xin Xiang, Peng Liu, Yu-Shen Han, Zhizhong Yan, Yuanjie An, Junyi Zhu, Lifa Lin, Changwei Liu, Dongrui Li, Xin Gómez-Fernández, Francisco Wang, Qinlong Yang, Yang S-Lab Nanyang Technological University Singapore SenseTime-CUHK Joint Lab The Chinese University of Hong Kong Hong Kong Sensetime Research Shanghai AI Laboratory China Department of Automation Tsinghua University China University of Chinese Academy of Sciences China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Digital Medical Research Center School of Basic Medical Science Fudan University China School of Software BNRist Tsinghua University China *** Wayne State University State Key Laboratory for Novel Software Technology Nanjing University China DeepGlint Shanghai Jiao Tong University China Sichuan University China Xi'an Jiaotong University China
As real-scanned point clouds are mostly partial due to occlusions and viewpoints, reconstructing complete 3D shapes based on incomplete observations becomes a fundamental problem for computer vision. With a single inc... 详细信息
来源: 评论
Learning to learn a cold-start sequential recommender
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Xiaowen Sang, Jitao Yu, Jian Xu, Changsheng School of Computer and Information Technology Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Haidian Qu Shi Beijing China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun Rd Haidian Qu Shi Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences 80 Zhongguancun Rd Haidian Qu Shi Beijing China Peng Cheng Laboratory Shenzhen China
The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algo... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Corrigendum to Intrusion detection based on improved density peak clustering for imbalanced data on sensor-cloud systems Journal of Systems Architecture volume 118 (2021) 102212
收藏 引用
Journal of Systems Architecture 2021年 119卷
作者: Ming Yan Yewang Chen Xiaoliang Hu Dongdong Cheng Yi Chen Jixiang Du The College of Computer Science and Technology Huaqiao University Xiamen China Beijing Key Laboratory of Big Data Technology for Food Safety Beijing Technology and Business University Beijing China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Soochow China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Xiamen China College of Big Data and Intelligent Engineering Yangtze Normal University Chongqing China
来源: 评论
Group shift pointwise convolution for volumetric medical image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: He, Junjun Ye, Jin Li, Cheng Song, Diping Chen, Wanli Wang, Shanshan Gu, Lixu Qiao, Yu School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China The Chinese University of Hong Kong Hong Kong Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Recent studies have witnessed the effectiveness of 3D convolutions on segmenting volumetric medical images. Compared with the 2D counterparts, 3D convolutions can capture the spatial context in three dimensions. Never... 详细信息
来源: 评论
CUGE: A Chinese Language Understanding and Generation Evaluation Benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Yao, Yuan Dong, Qingxiu Guan, Jian Cao, Boxi Zhang, Zhengyan Xiao, Chaojun Wang, Xiaozhi Qi, Fanchao Bao, Junwei Nie, Jinran Zeng, Zheni Gu, Yuxian Zhou, Kun Huang, Xuancheng Li, Wenhao Ren, Shuhuai Lu, Jinliang Xu, Chengqiang Wang, Huadong Zeng, Guoyang Zhou, Zile Zhang, Jiajun Li, Juanzi Huang, Minlie Yan, Rui He, Xiaodong Wan, Xiaojun Zhao, Xin Sun, Xu Liu, Yang Liu, Zhiyuan Han, Xianpei Yang, Erhong Sui, Zhifang Sun, Maosong Department of Computer Science and Technology Tsinghua University China MOE Key Lab of Computational Linguistics School of EECS Peking University China Institute of Software Chinese Academy of Sciences China JD AI Research Beijing China School of Information Science Beijing Language and Culture University China School of Information Renmin University of China China National Laboratory of Pattern Recognition Institute of Automation CAS China Gaoling School of Artificial Intelligence Renmin University of China China Wangxuan Institute of Computer Technology Peking University Beijing Academy of Artificial Intelligence China
Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose... 详细信息
来源: 评论
Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China School of Communication and Information Engineering Shanghai University Shanghai200444 China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China Research Center for Industries of the Future the School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论
Towards Phytoplankton Parasite Detection Using Autoencoders
arXiv
收藏 引用
arXiv 2023年
作者: Bilik, Simon Batrakhanov, Daniel Eerola, Tuomas Haraguchi, Lumi Kraft, Kaisa Van den Wyngaert, Silke Kangas, Jonna Sjöqvist, Conny Madsen, Karin Lensu, Lasse Kälviäinen, Heikki Horak, Karel Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Marine Ecology Measurements Finnish Environment Institute Agnes Sjöbergin Katu 2 Helsinki00790 Finland Department of Biology University of Turku Vesilinnantie 5 Turku20014 Finland Environmental and Marine Biology Åbo Akademi University Henrikinkatu 2 Turku20014 Finland
Phytoplankton parasites are largely understudied microbial components with a potentially significant ecological impact on phytoplankton bloom dynamics. To better understand their impact, we need improved detection met... 详细信息
来源: 评论
CNN-based invertible wavelet scattering for the investigation of diffusion properties of the in vivo human heart in diffusion tensor imaging
arXiv
收藏 引用
arXiv 2019年
作者: Deng, Zeyu Wang, Lihui Kuai, Zixiang Chen, Qijian Cheng, Xinyu Yang, Feng Yang, Jie Zhu, Yuemin Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang550025 China Imaging Center Harbin Medical University Cancer Hospital Harbin150081 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China University Lyon INSA Lyon CNRS Inserm IRP Metislab CREATIS UMR5220 U1206 LyonF-69621 France
In vivo diffusion tensor imaging (DTI) is a promising technique to investigate noninvasively the fiber structures of the in vivo human heart. However, signal loss due to motions remains a persistent problem in in vivo... 详细信息
来源: 评论
MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Xiaozhi Chen, Yulin Ding, Ning Peng, Hao Wang, Zimu Lin, Yankai Han, Xu Hou, Lei Li, Juanzi Liu, Zhiyuan Li, Peng Zhou, Jie Department of Computer Science and Technology BNRist China Shenzhen International Graduate School China THU-Siemens Ltd. China Joint Research Center for Industrial Intelligence and IoT China Tsinghua University Beijing China Xi’an Jiaotong-Liverpool University Suzhou China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit... 详细信息
来源: 评论