咨询与建议

限定检索结果

文献类型

  • 86 篇 会议
  • 66 篇 期刊文献

馆藏范围

  • 152 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 109 篇 工学
    • 75 篇 计算机科学与技术...
    • 48 篇 软件工程
    • 18 篇 信息与通信工程
    • 17 篇 电子科学与技术(可...
    • 11 篇 电气工程
    • 10 篇 机械工程
    • 10 篇 控制科学与工程
    • 10 篇 网络空间安全
    • 8 篇 生物工程
    • 6 篇 动力工程及工程热...
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 光学工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 化学工程与技术
    • 4 篇 生物医学工程(可授...
    • 3 篇 安全科学与工程
    • 3 篇 公安技术
  • 47 篇 理学
    • 27 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 11 篇 生物学
    • 6 篇 系统科学
    • 3 篇 化学
  • 22 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 7 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 4 篇 法学
    • 3 篇 社会学
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 2 篇 艺术学
  • 1 篇 经济学
  • 1 篇 医学
  • 1 篇 军事学

主题

  • 6 篇 algorithm design...
  • 5 篇 hardware
  • 5 篇 training
  • 4 篇 energy consumpti...
  • 4 篇 schedules
  • 4 篇 real-time system...
  • 4 篇 field programmab...
  • 4 篇 scheduling
  • 3 篇 prediction model...
  • 3 篇 computer archite...
  • 3 篇 logic gates
  • 3 篇 optimization
  • 3 篇 particle swarm o...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 scheduling algor...
  • 3 篇 encryption
  • 3 篇 heuristic algori...
  • 2 篇 internet of thin...
  • 2 篇 object detection

机构

  • 21 篇 key laboratory f...
  • 20 篇 key laboratory f...
  • 15 篇 college of compu...
  • 11 篇 key laboratory f...
  • 6 篇 college of infor...
  • 6 篇 collaborative in...
  • 5 篇 department of co...
  • 5 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 4 篇 national collabo...
  • 4 篇 key laboratory o...
  • 4 篇 hunan university...
  • 4 篇 college of compu...
  • 3 篇 the key laborato...
  • 3 篇 department of el...
  • 3 篇 school of comput...
  • 3 篇 school of mathem...
  • 3 篇 key laboratory o...
  • 3 篇 college of infor...
  • 3 篇 embedded systems...

作者

  • 19 篇 renfa li
  • 17 篇 li renfa
  • 13 篇 xie guoqi
  • 13 篇 guoqi xie
  • 7 篇 wang junli
  • 7 篇 wu di
  • 7 篇 wanli chang
  • 6 篇 liu yan
  • 6 篇 wang yi
  • 5 篇 yi wang
  • 5 篇 junli wang
  • 5 篇 changjun jiang
  • 5 篇 chungang yan
  • 4 篇 yan chungang
  • 4 篇 kehua yang
  • 4 篇 wenhong ma
  • 4 篇 xu cheng
  • 4 篇 xiongren xiao
  • 4 篇 jiang changjun
  • 4 篇 li zhiyong

语言

  • 151 篇 英文
  • 1 篇 中文
检索条件"机构=Key Laboratory for Embedded and Network Computing of Hunan University"
152 条 记 录,以下是121-130 订阅
排序:
DCOM-GNN: A Deep Clustering Optimization Method for Graph
SSRN
收藏 引用
SSRN 2023年
作者: Yang, Haoran Wang, Junli Duan, Rui Yan, Chungang Key Laboratory of Embedded System and Service Computing Ministry of Education Shanghai201804 China Collaborative Innovation Center for Financial Network Security Tongji University Shanghai201804 China
Deep clustering plays an important role in data analysis, and with the prevalence of graph data nowadays, various deep clustering models on graph are constantly proposed. However, due to the lack of more adequate clus... 详细信息
来源: 评论
Graph Ensemble Neural network
SSRN
收藏 引用
SSRN 2023年
作者: Duan, Rui Yan, Chungang Wang, Junli Jiang, Changjun Key Laboratory of Embedded System and Service Computing Ministry of Education Shanghai201804 China Collaborative Innovation Center for Financial Network Security Tongji University Shanghai201804 China
Ensemble methods have been shown to improve graph neural networks (GNNs). Existing ensemble methods on graphs determine a strong classifier by combining a set of trained base classifiers, i.e., combining the final out... 详细信息
来源: 评论
A Novel ICD Coding Method Based on Associated and Hierarchical Code Description Distillation
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Bin Wang, Junli Key Laboratory of Embedded System and Service Computing Tongji University Ministry of Education Shanghai201804 China Collaborative Innovation Center for Financial Network Security Tongji University Shanghai201804 China
ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. ICD coding is a challenging multilabel text classification problem due to noisy medical... 详细信息
来源: 评论
Routing Strategy for SDN Large Flow Based on Deep Reinforcement Learning
Routing Strategy for SDN Large Flow Based on Deep Reinforcem...
收藏 引用
IEEE International Conference on Big Data and Cloud computing (BdCloud)
作者: Yu Ke Junli Wang Chungang Yan Jiamin Yao Key Laboratory of Embedded System and Service Computing Collaborative Innovation Center for Financial Network Security (Tongji University) Ministry of Education National (Province-Ministry Joint) Tongji University Shanghai China
With the expansion of network scale, traditional routing strategies in Software-Defined networking (SDN) have difficulty adapting to fast traffic variability. The large flow in the network occupies 80% of the network ... 详细信息
来源: 评论
Correct after Answer: Enhancing Multi-Span Question Answering with Post-Processing Method
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Jiayi Zhang, Chenyang Tong, Haibo Zhang, Dongyu Hong, Qingqing Hou, Bingxuan Wang, Junli Key Laboratory of Embedded System and Service Computing Tongji University Ministry of Education Shanghai201804 China Collaborative Innovation Center for Financial Network Security Tongji University Shanghai201804 China
Multi-Span Question Answering (MSQA) requires models to extract one or multiple answer spans from a given context to answer a question. Prior work mainly focuses on designing specific methods or applying heuristic str... 详细信息
来源: 评论
FedDDB: Clustered Federated Learning based on Data Distribution Difference  22
FedDDB: Clustered Federated Learning based on Data Distribut...
收藏 引用
Proceedings of the 2022 5th International Conference on Algorithms, computing and Artificial Intelligence
作者: Chengyu You Zihao Lu Junli Wang Chungang Yan Key Laboratory of Embedded System and Service Computing (Tongji University) Ministry of Education China and National (Province-Ministry Joint) Collaborative Innovation Center for Financial Network Security Tongji University China
Clustered federated learning is a federated learning method based on multi-task learning. It groups similar clients into the same clusters and shares model parameters to solve the problem that the joint model is trapp... 详细信息
来源: 评论
A Dual-stage Attention Based SDN Traffic Prediction Method
A Dual-stage Attention Based SDN Traffic Prediction Method
收藏 引用
IEEE International Conference on Big Data and Cloud computing (BdCloud)
作者: Chenjing Gao Junli Wang Chungang Yan Key Laboratory of Embedded System and Service Computing (Tongji University) Ministry of Education National (Province-Ministry Joint) Collaborative Innovation Center for Financial Network Security Tongji University Shanghai China
Traffic matrix is the main research object of traffic prediction in software-defined networking. Accurate and timely traffic matrix prediction plays an important role in avoiding network congestion. While various meth... 详细信息
来源: 评论
LAMPT: LAbel Mask-Predicted Transformer for Extreme Multi-label Text Classification
LAMPT: LAbel Mask-Predicted Transformer for Extreme Multi-la...
收藏 引用
IEEE International Conference on Big Data
作者: Yifan Xu Minghao Zhu Junli Wang Chungang Yan Key Laboratory of Embedded System and Service Computing (Tongji University) Ministry of Education. National (Province-Ministry Joint) Collaborative Innovation Center for Financial Network Security Tongji University Shanghai China
Extreme Multi-label text Classification ( XMC) is a task of recalling the most relevant labels for each given text from an extremely large-scale label set. It is emphasized that XMC is a more complex classification ta... 详细信息
来源: 评论
An Energy-efficient Traffic Scheduling Method based on Slime Mould Algorithm for SDN
An Energy-efficient Traffic Scheduling Method based on Slime...
收藏 引用
International Conference on Information Systems and Computer networks (ISCON)
作者: Zheyuan Wang Junli Wang Chungang Yan Ministry of Education Key Laboratory of Embedded System and Service Computing (Tongji University) Shanghai China National (Province-Ministry Joint) Collaborative Innovation Center for Financial Network Security Tongji University Shanghai China
Software defined network (SDN) enables efficient and green traffic management by separating the control and data planes. However, the existing itemized scheduling approach is prone to waste of network resources and en... 详细信息
来源: 评论
An Improved Convolutional Neural network Algorithm for Multi-Label Classification
An Improved Convolutional Neural Network Algorithm for Multi...
收藏 引用
International Conference on Audio, Language and Image Processing, ICALIP
作者: Xinsheng Wang Lijun Sun Zhihua Wei Department of Computer Science and Technology Tongji University Shanghai China Research Center of Big Data and Network Security Tongji University Shanghai China Key Laboratory of Embedded System and Service Computing Tongji University Shanghai China
Recent years conventional neural network(CNN) has been applied to different natural language processing(NLP) tasks such as sentence classification, sentence modeling, etc. Some researchers use CNN to do multi-label cl... 详细信息
来源: 评论