咨询与建议

限定检索结果

文献类型

  • 805 篇 会议
  • 565 篇 期刊文献

馆藏范围

  • 1,370 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 906 篇 工学
    • 477 篇 计算机科学与技术...
    • 399 篇 软件工程
    • 255 篇 控制科学与工程
    • 140 篇 生物工程
    • 125 篇 电气工程
    • 125 篇 生物医学工程(可授...
    • 115 篇 机械工程
    • 102 篇 信息与通信工程
    • 93 篇 电子科学与技术(可...
    • 84 篇 光学工程
    • 52 篇 化学工程与技术
    • 47 篇 仪器科学与技术
    • 40 篇 材料科学与工程(可...
    • 37 篇 力学(可授工学、理...
    • 26 篇 航空宇航科学与技...
    • 24 篇 动力工程及工程热...
    • 17 篇 交通运输工程
  • 555 篇 理学
    • 320 篇 数学
    • 153 篇 生物学
    • 138 篇 物理学
    • 108 篇 系统科学
    • 90 篇 统计学(可授理学、...
    • 45 篇 化学
  • 185 篇 管理学
    • 136 篇 管理科学与工程(可...
    • 50 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 69 篇 医学
    • 62 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 15 篇 农学
  • 13 篇 法学
  • 5 篇 文学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学

主题

  • 38 篇 feature extracti...
  • 33 篇 training
  • 27 篇 image processing
  • 25 篇 image segmentati...
  • 25 篇 machine learning
  • 24 篇 computational mo...
  • 22 篇 neurons
  • 21 篇 semantics
  • 21 篇 mathematical mod...
  • 21 篇 multi-agent syst...
  • 17 篇 electroencephalo...
  • 17 篇 intelligent cont...
  • 17 篇 multi agent syst...
  • 16 篇 support vector m...
  • 15 篇 laboratories
  • 15 篇 pattern recognit...
  • 15 篇 robustness
  • 14 篇 object detection
  • 14 篇 ultrasonic imagi...
  • 14 篇 neural networks

机构

  • 79 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 60 篇 school of automa...
  • 52 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 26 篇 department of co...
  • 25 篇 alibaba group
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 institute of ima...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 13 篇 key laboratory o...
  • 13 篇 school of automa...
  • 12 篇 school of artifi...
  • 12 篇 key laboratory o...

作者

  • 64 篇 wu dongrui
  • 61 篇 sang nong
  • 52 篇 gao changxin
  • 51 篇 zeng zhigang
  • 44 篇 zhigang zeng
  • 41 篇 jian huang
  • 36 篇 ding mingyue
  • 36 篇 pan linqiang
  • 34 篇 huang jian
  • 33 篇 yongji wang
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 30 篇 hai-tao zhang
  • 29 篇 wang yongji
  • 27 篇 housheng su
  • 26 篇 su housheng
  • 24 篇 xi li
  • 24 篇 wang xiang
  • 23 篇 liu jian
  • 23 篇 zhang shiwei

语言

  • 1,210 篇 英文
  • 127 篇 其他
  • 36 篇 中文
检索条件"机构=Key Laboratory for Image Processing and Intellectual Control"
1370 条 记 录,以下是561-570 订阅
排序:
Context Prior for Scene Segmentation
Context Prior for Scene Segmentation
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Changqian Yu Jingbo Wang Changxin Gao Gang Yu Chunhua Shen Nong Sang Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology The University of Adelaide Australia The Chinese University of Hong Kong The University of Adelaide Tencent
Recent works have widely explored the contextual dependencies to achieve more accurate segmentation results. However, most approaches rarely distinguish different types of contextual dependencies, which may pollute th... 详细信息
来源: 评论
A Multi-Channel Multi-Head CNN Framework for Fault Classification in Industrial Process
A Multi-Channel Multi-Head CNN Framework for Fault Classific...
收藏 引用
Data Driven control and Learning Systems (DDCLS)
作者: Hui Wu Yan Wang Junyu Lin Weidong Yang Yanwei Wang Ying Zheng The Key Laboratory of Image Information Processing and Intelligent Control Huazhong University of Science and Technology Wuhan China Zhengzhou University of Light Industry Zhengzhou China Wuhan Institute of Technology Wuhan China
This paper proposes a novel fault classification method via convolutional neural network with multi-channel and multi-head along the time dimension, which is defined as MM-CNN. The MM-CNN extracts features of industri... 详细信息
来源: 评论
Hand Gesture Recognition Based on Multi-Classification Adaptive Neuro-Fuzzy Inference System and pMMG
Hand Gesture Recognition Based on Multi-Classification Adapt...
收藏 引用
International Conference on Advanced Robotics and Mechatronics (ICARM)
作者: Lei Wang Jian Huang Dongrui Wu Tao Duan Rui Zong Shicong Jiang Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Laboratory for Economics and Computation City University of Hong Kong Kowloon Hong Kong SAR China
In this paper, a multi-classification adaptive neuro-fuzzy inference system combining neural-network and a TSK fuzzy system is proposed to recognize six commonly used gestures. Several techniques including mini-batch ... 详细信息
来源: 评论
A polynomial chaos approach to robust H∞ static output-feedback control with bounded truncation error
arXiv
收藏 引用
arXiv 2021年
作者: Wan, Yiming Shen, Dongying E. Lucia, Sergio Findeisen, Rolf Braatz, Richard D. Artificial Intelligence and Automation Huazhong University of Science and Technology Key Laboratory of Image Processing and Intelligent Control Ministry of Education Wuhan430074 China Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States TU Dortmund University Dortmund44227 Germany Otto-von-Guericke University Magdeburg Magdeburg39106 Germany
This article considers the H∞ static output-feedback control for linear time-invariant uncertain systems with polynomial dependence on probabilistic time-invariant parametric uncertainties. By applying polynomial cha... 详细信息
来源: 评论
Transfer Learning for Motor imagery Based Brain-Computer Interfaces: A Complete Pipeline
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Dongrui Jiang, Xue Peng, Ruimin Kong, Wanzeng Huang, Jian Zeng, Zhigang Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Zhejiang Key Laboratory for Brain-Machine Collaborative Intelligence Hangzhou Dianzi University Hangzhou310018 China
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop ... 详细信息
来源: 评论
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM image processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Rui Hu Jiaming Cai Wangjie Zheng Yang Yang Hong-Bin Shen Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Jiao Tong University Shanghai China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
Resilient Distributed Predefined Time Secondary control for Cyber-Physical Microgrids
收藏 引用
IET Renewable Power Generation 2025年 第1期19卷
作者: Tan, Junfeng Zhang, Fan Huang, Yanlu Zhao, Shuai Su, Hongyu China Southern Power Grid Digital Grid Research Institute Co. Ltd. China Southern Power Grid Artificial Intelligence Technology Co. Ltd. Guangzhou China School of Artificial Intelligence and Automation and Technology and also with the Key Laboratory of Image Processing and Intelligent Control Ministry of Education Huazhong University of Science and Technology Wuhan China
This paper proposed a resilient distributed predefined-time sliding mode control for islanded AC microgrids with external disturbances caused by noisy circumstances or cyber-attacks. By utilizing the predefined-time c... 详细信息
来源: 评论
Pool-Based Unsupervised Active Learning for Regression Using Iterative Representativeness-Diversity Maximization (iRDM)
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ziang Jiang, Xue Luo, Hanbin Fang, Weili Liu, Jiajing Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology China School of Civil Engineering and Mechanics Huazhong University of Science and Technology China
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regressi... 详细信息
来源: 评论
Closer to Pre-trained Network Transfer Better
Closer to Pre-trained Network Transfer Better
收藏 引用
IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
作者: Siyu Chen Wei Li School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan People’s Republic of China Image Processing and Intelligent Control Key Laboratory Education Ministry of China Wuhan People’s Republic of China
In recent years, Deep Neural Network (DNN) has been widely used in the domain of computer vision, but its further development is restricted because of the lack of train samples. Fine-tuning is one of deep transfer lea... 详细信息
来源: 评论
Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Dongrui Xu, Jiaxin Fang, Weili Zhang, Yi Yang, Liuqing Xu, Xiaodong Luo, Hanbin Yu, Xiang The Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Zhejiang Lab Hangzhou311121 China The School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan430074 China The College of Public Administration Huazhong University of Science and Technology Wuhan430074 China The University of Michigan Ann ArborMI48109 United States The School of Management and Sino European Institute for Intellectual Property Huazhong University of Science and Technology Wuhan430074 China
Physiological computing uses human physiological data as system inputs in real time. It includes, or significantly overlaps with, brain-computer interfaces, affective computing, adaptive automation, health informatics... 详细信息
来源: 评论