咨询与建议

限定检索结果

文献类型

  • 805 篇 会议
  • 570 篇 期刊文献

馆藏范围

  • 1,375 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 905 篇 工学
    • 479 篇 计算机科学与技术...
    • 398 篇 软件工程
    • 258 篇 控制科学与工程
    • 141 篇 生物工程
    • 127 篇 电气工程
    • 126 篇 生物医学工程(可授...
    • 117 篇 机械工程
    • 103 篇 信息与通信工程
    • 95 篇 电子科学与技术(可...
    • 83 篇 光学工程
    • 52 篇 化学工程与技术
    • 47 篇 仪器科学与技术
    • 37 篇 力学(可授工学、理...
    • 36 篇 材料科学与工程(可...
    • 26 篇 航空宇航科学与技...
    • 24 篇 动力工程及工程热...
    • 17 篇 交通运输工程
  • 559 篇 理学
    • 320 篇 数学
    • 153 篇 生物学
    • 138 篇 物理学
    • 109 篇 系统科学
    • 87 篇 统计学(可授理学、...
    • 45 篇 化学
  • 185 篇 管理学
    • 136 篇 管理科学与工程(可...
    • 50 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 70 篇 医学
    • 62 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 15 篇 农学
  • 13 篇 法学
  • 5 篇 文学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 3 篇 军事学
  • 1 篇 哲学

主题

  • 38 篇 feature extracti...
  • 34 篇 training
  • 27 篇 image processing
  • 25 篇 image segmentati...
  • 25 篇 machine learning
  • 24 篇 computational mo...
  • 22 篇 neurons
  • 21 篇 semantics
  • 21 篇 mathematical mod...
  • 21 篇 multi-agent syst...
  • 17 篇 electroencephalo...
  • 17 篇 intelligent cont...
  • 17 篇 multi agent syst...
  • 16 篇 support vector m...
  • 15 篇 laboratories
  • 15 篇 pattern recognit...
  • 15 篇 robustness
  • 14 篇 object detection
  • 14 篇 ultrasonic imagi...
  • 14 篇 neural networks

机构

  • 80 篇 school of artifi...
  • 70 篇 key laboratory o...
  • 60 篇 school of automa...
  • 50 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 26 篇 department of co...
  • 26 篇 key laboratory o...
  • 25 篇 alibaba group
  • 23 篇 key laboratory o...
  • 20 篇 institute of ima...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 13 篇 key laboratory o...
  • 13 篇 school of automa...
  • 12 篇 school of artifi...
  • 12 篇 key laboratory o...

作者

  • 64 篇 wu dongrui
  • 61 篇 sang nong
  • 52 篇 gao changxin
  • 51 篇 zeng zhigang
  • 44 篇 zhigang zeng
  • 41 篇 jian huang
  • 36 篇 ding mingyue
  • 36 篇 pan linqiang
  • 34 篇 huang jian
  • 33 篇 yongji wang
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 30 篇 hai-tao zhang
  • 29 篇 wang yongji
  • 27 篇 housheng su
  • 26 篇 su housheng
  • 25 篇 xi li
  • 24 篇 wang xiang
  • 23 篇 liu jian
  • 23 篇 zhang shiwei

语言

  • 1,177 篇 英文
  • 166 篇 其他
  • 36 篇 中文
检索条件"机构=Key Laboratory for Image Processing and Intellectual Control"
1375 条 记 录,以下是591-600 订阅
排序:
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
第三十九届中国控制会议
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunicationsand Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Channel and Trials Selection for Reducing Covariate Shift in EEG-based Brain-Computer Interfaces
Channel and Trials Selection for Reducing Covariate Shift in...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: He He Dongrui Wu Key Laboratory for Image Processing and Intelligent Control Ministry of Education and the School of Artificial Intelligence and Automation Huazhong University of Science and Technology
This paper aims at reducing the calibration effort of EEG-based brain-computer interfaces (BCIs). More specifically, in the context of cross-subject classification, we correct covariate shift of EEG data from differen... 详细信息
来源: 评论
RGB-based combustion state classification and stability analysis of SOFC afterburner: effects of fuel utilization and steam-to-carbon ratio
收藏 引用
Fuel 2025年 402卷
作者: Jingjing Wang Shuyu Zhang Jingang Lai Jiashu Jin Chun Zou Jung-Sik Kim Zhonghua Deng Yuanwu Xu Xi Li School of Artificial Intelligence and Automation Key Laboratory of Image Processing and Intelligent Control of Education Ministry Huazhong University of Science and Technology Wuhan 430074 China State Key Laboratory of Coal Combustion Huazhong University of Science and Technology Wuhan 430074 China Sino-French Engineer School/School of General Engineering Beihang University Beijing 100191 China Wuhan Huamao Automation Co. Ltd. Wuhan 430205 China School of Artificial Intelligence and Automation Wuhan University of Science and Technology Wuhan 430081 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518055 China
Solid oxide fuel cell (SOFC) systems efficiently convert chemical energy into electricity but produce high-temperature exhaust gases containing unreacted fuels. The afterburner combusts these residual fuels to enhance... 详细信息
来源: 评论
Deep reinforcement learning with a stage incentive mechanism of dense reward for robotic trajectory planning
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Yang, Jin Khyam, Mohammad Omar Key Laboratory of Image Processing and Intelligent Control Ministry of EducationB School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Automation South East University Nanjing China School of Engineering and Technology Central Queensland University Melbourne Australia
To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from... 详细信息
来源: 评论
control-oriented fault detection of solid oxide fuel cell system unknown input on fuel supply
Control-oriented fault detection of solid oxide fuel cell sy...
收藏 引用
作者: Wu, Xiao-long Xu, Yuan-wu Xue, Tao Shuai, Junchao Jiang, Jianhua Deng, Zhonghua Fu, Xiaowei Li, Xi School of Automation Key Laboratory of Education Ministry for Image Processing and Intelligent Control Huazhong University of Science & Technology Wuhan China College of Computer Science and Technology Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Wuhan University of Science and Technology Wuhan China Wuhan Industrial Economic Development Research Center Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen China
As the solid oxide fuel cell (SOFC) system work environment is a high-temperature environment for a long time, it is difficult to obtain the SOFC stack internal state change directly. When the fault occurs, it is diff... 详细信息
来源: 评论
Neighborhood Interval Observer Based Coordination control for Multi-agent Systems with Disturbances ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 10994-10999页
作者: Xiaoling Wang Guo-Ping Jiang Wen Yang Housheng Su Xiaofan Wang College of Automation Nanjing University of Posts and Telecommunications Nanjing 210023 China and also with Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot) Nanjing 210023 China Key Laboratory of Advanced Control and Optimization for Chemical Processes East China University of Science and Technology Shanghai 200237 China School of Artifcial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Luoyu Road 1037 Wuhan 430074 China Department of Automation Shanghai University Shanghai 200072 China
This paper focuses on multi-agent systems with uncertain disturbances, in which only the bounding functions on the disturbances and the bounds on the initial state of each agent are known. By designing a neighborhood ... 详细信息
来源: 评论
Parity space-based model mismatch detection for linear discrete time-invariant systems with unknown disturbances
Parity space-based model mismatch detection for linear discr...
收藏 引用
Chinese control Conference (CCC)
作者: Yi Tang Dan Ling Hong Zhang Yanewei Wang Ying Zheng the Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Electrical and Information Engineering Zhengzhou University of Light Industry Zhengzhou China School of Mechanical & Electrical Engineering Wuhan Institute of Technology Wuhan China
Model mismatch is one of the main factors of control performance degradation. In this paper, a new model mismatch detection approach with parity space-based methods is proposed for linear discrete time-invariant (LDTI... 详细信息
来源: 评论
Improving magnetic nanothermometry accuracy through mixing-frequency excitation
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Silin Liu, Jay Du, ZhongZhou Liu, Wenzhong School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Key Laboratory of Image Processing and Intelligent Control Huazhong University of Science and Technology Wuhan430074 China Ningbo Chuanshanjia Electrical and Mechanical Co. Ltd. Ningbo315400 China
In this study, we proposed a temperature model of magnetic nanoparticle relaxation and a phase measurement method under a mixing-frequency excitation field, which can improve the temperature accuracy of magnetic nanot... 详细信息
来源: 评论
Pining control Algorithm for Complex Networks
Pining Control Algorithm for Complex Networks
收藏 引用
第三十八届中国控制会议
作者: Bingjun Wang Hui Liu Jiangnqiao Xu Jiaqi Liu School of Artificial Intelligence and Automation & Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Huazhong University of Science and Technology
In this paper, we quote the concept of resistance distance for Pinning control, and discuss the relationship between the upper bound of the minimum eigenvalue of the grounded Laplacian Matrix and the resistance distan... 详细信息
来源: 评论
DAmageNet: A universal adversarial dataset
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Sizhe Huang, Xiaolin He, Zhengbao Sun, Chengjin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in... 详细信息
来源: 评论