咨询与建议

限定检索结果

文献类型

  • 82 篇 会议
  • 49 篇 期刊文献

馆藏范围

  • 131 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 60 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 18 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 5 篇 生物工程
    • 4 篇 光学工程
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 农业工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 动力工程及工程热...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
  • 48 篇 理学
    • 35 篇 数学
    • 10 篇 统计学(可授理学、...
    • 8 篇 系统科学
    • 6 篇 生物学
    • 5 篇 化学
    • 3 篇 物理学
    • 2 篇 大气科学
  • 32 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 14 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 4 篇 农学
    • 3 篇 作物学
  • 3 篇 文学
    • 3 篇 新闻传播学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 20 篇 machine learning
  • 10 篇 support vector m...
  • 9 篇 training
  • 8 篇 educational inst...
  • 8 篇 classification a...
  • 8 篇 accuracy
  • 6 篇 computer science
  • 5 篇 search engines
  • 4 篇 computational in...
  • 4 篇 optimization
  • 4 篇 decision trees
  • 4 篇 feature extracti...
  • 3 篇 text categorizat...
  • 3 篇 learning systems
  • 3 篇 classification t...
  • 3 篇 indexes
  • 3 篇 training data
  • 3 篇 data mining
  • 3 篇 web pages
  • 3 篇 databases

机构

  • 20 篇 key laboratory o...
  • 20 篇 hebei key labora...
  • 14 篇 college of mathe...
  • 8 篇 college of mathe...
  • 7 篇 key laboratory i...
  • 6 篇 college of mathe...
  • 5 篇 hebei key labora...
  • 4 篇 xlim umr cnrs 72...
  • 4 篇 key laboratory o...
  • 4 篇 research center ...
  • 4 篇 key laboratory o...
  • 4 篇 hebei key labora...
  • 3 篇 hebei key labora...
  • 3 篇 key laboratory o...
  • 3 篇 key lab. in mach...
  • 3 篇 department of fo...
  • 3 篇 hebei university...
  • 3 篇 college of mathe...
  • 3 篇 college of elect...
  • 3 篇 key laboratory o...

作者

  • 10 篇 hong-jie xing
  • 10 篇 li yan
  • 8 篇 zhai junhai
  • 7 篇 bai ruipu
  • 7 篇 hua qiang
  • 6 篇 zhang feng
  • 6 篇 xing hong-jie
  • 6 篇 yan li
  • 6 篇 wei zhou
  • 6 篇 tian xuedong
  • 5 篇 yan zhan
  • 5 篇 wang bing
  • 5 篇 théra michel
  • 5 篇 zhang xin
  • 5 篇 yao jen-chih
  • 4 篇 qin ma
  • 4 篇 zhai jun-hai
  • 4 篇 xue-dong tian
  • 4 篇 yang ying
  • 4 篇 hao chen

语言

  • 127 篇 英文
  • 4 篇 其他
检索条件"机构=Key Laboratory in Machine Learning and Computational Intelligence of Hebei Province"
131 条 记 录,以下是51-60 订阅
排序:
3-Lie bialgebras and 3-pre-lie algebras induced by involutive derivations
arXiv
收藏 引用
arXiv 2019年
作者: Bai, Ruipu Hou, Shuai Kang, Chuangchuang College of Mathematics and Information Science Hebei University Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province Baoding071002 China College of Mathematics and Information Science Hebei University Baoding071002 China
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if A is an m-dimensional 3-Lie algebra with an involutive derivation D, then there exists a compatible 3-pre-Lie algeb...
来源: 评论
3-lie-rinehart algebras
arXiv
收藏 引用
arXiv 2019年
作者: BAI, RUIPU LI, XIAOJUAN WU, YINGLI College of Mathematics and Information Science Hebei University Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province Baoding071002 China College of Mathematics and Information Science Hebei University Baoding071002 China
In this paper, we define a class of 3-algebraswhich are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple (L, A, ρ), where A is a commutative associative algebra, L is an A-module, (A, ρ) is a 3-L...
来源: 评论
MANIN TRIPLES OF 3-LIE ALGEBRAS INDUCED BY INVOLUTIVE DERIVATIONS
arXiv
收藏 引用
arXiv 2019年
作者: Hou, Shuai Bai, Ruipu College of Mathematics and Information Science Hebei University Baoding071002 China College of Mathematics and Information Science Hebei University Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province Baoding071002 China
For any n-dimensional 3-Lie algebra A over a field of characteristic zero with an involutive derivation D, we investigate the structure of the 3-Lie algebra B1 = A ad∗ A∗ associated with the coadjoint representation (...
来源: 评论
Multimodal Representation learning: Advances, Trends and Challenges
Multimodal Representation Learning: Advances, Trends and Cha...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Su-Fang Zhang Jun-Hai Zhai Bo-Jun Xie Yan Zhan Xin Wang Hebei Branch of China Meteorological Administration Training Center China Meteorological Administration Baoding China Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding Hebei China
Representation learning is the base and crucial for consequential tasks, such as classification, regression, and recognition. The goal of representation learning is to automatically learning good features with deep mo... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
An Acceleration Method for Computing Dominace Classes in Ordered Information System
An Acceleration Method for Computing Dominace Classes in Ord...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Yan Li Jing Zhang Qiang He Siyuan Liu Lujing Huo School of Applied Mathematics Beijing Normal University Zhuhai Zhuhai China Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding Hebei China School of Science Beijing University of Civil Engineering and Architecture Beijing China
In rough set theory, two crisp sets (i.e., the lower and upper approximates of a target concept) is used to describe uncertainties in given information systems. However, the traditional rough set models are built base... 详细信息
来源: 评论
Rotation Based Ensemble of One-Class Support Vector machines
Rotation Based Ensemble of One-Class Support Vector Machines
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Wei-Tao Liu Hong-Jie Xing Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding China
One-class support vector machine (OCSVM) is regarded as an important one-class classification method for tackling the problem of extreme class imbalance. However, combining several OCSVMs by the traditional ensemble a... 详细信息
来源: 评论
Adaptive-weighted One-Class Support Vector machine for Outlier Detection  29
Adaptive-weighted One-Class Support Vector Machine for Outli...
收藏 引用
第29届中国控制与决策会议
作者: Man Ji Hong-Jie Xing Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information ScienceHebei University
The classification performances of the traditional one-class support vector machine(OCSVM) and its variants are often not satisfying when outliers are *** deal with this case,assigning smaller weights to these outlier... 详细信息
来源: 评论
Locality Correlation Preserving Based One-Class Support Vector machine  29
Locality Correlation Preserving Based One-Class Support Vect...
收藏 引用
第29届中国控制与决策会议
作者: Jian-Di Chang Hong-Jie Xing Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information ScienceHebei University
In order to fully utilize the local geometric information of the given training set consisting of the normal data,locality correlation preserving(LCP) is introduced into the traditional one-class support vector machin... 详细信息
来源: 评论
Structure of n-Lie algebras with involutive derivations
收藏 引用
International Journal of Mathematics and Mathematical Sciences 2018年 第1期2018卷 1-9页
作者: Bai, Ruipu Hou, Shuai Gao, Yansha College of Mathematics and Information Science Hebei University Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province Baoding 071002 China College of Mathematics and Information Science Hebei University Baoding 071002 China
We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1... 详细信息
来源: 评论