Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...
详细信息
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
Long-term reconstructed solar-induced chlorophyll fluorescence (SIF) derived from raw gridded SIF has been used for the estimation of gross primary production (GPP), but the robustness of the spatial relationship may ...
详细信息
This paper addresses the finite-time consensus (FTC) issue for second-order multi-agent systems (MASs) with nonlinear disturbances. To tackle the challenges posed by increasingly complex communication environments, an...
详细信息
In this paper, a unified influence networks model incorporating differential privacy mechanisms (DPMs), called the differentially private opinion dynamics (DPODs) model is proposed. In this model, each individual uses...
详细信息
Considering the imprecise nature of the data in real-world problems, the earliness/tardiness (E/T) fiowshop scheduling problem with uncertain processing time and distinct due windows is concerned in this paper. A fu...
详细信息
Considering the imprecise nature of the data in real-world problems, the earliness/tardiness (E/T) fiowshop scheduling problem with uncertain processing time and distinct due windows is concerned in this paper. A fuzzy scheduling model is established and then transformed into a deterministic one by employing the method of maximizing the membership function of middle value. Moreover, an effective scatter search based particle swarm optimization (SSPSO) algorithm is proposed to minimize the sum of total earliness and tardiness penalties. The proposed SSPSO algorithm incorporates the scatter search (SS) algorithm into the frame of particle swarm optimization (PSO) algorithm and gives full play to their characteristics of fast convergence and high diversity. Besides, a differential evolution (DE) scheme is used to generate solutions in the SS. In addition, the dynamic update strategy and critical conditions are adopted to improve the performance of SSPSO. The simulation results indicate the superiority of SSPSO in terms of effectiveness and efficiency.
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes...
详细信息
In this paper, we propose a novel performance monitoring and fault detection method, which is based on modified structure analysis and globality and locality preserving (MSAGL) projection, for non-Gaussian processes with multiple operation conditions. By using locality preserving projection to analyze the embedding geometrical manifold and extracting the non-Gaussian features by independent component analysis, MSAGL preserves both the global and local structures of the data simultaneously. Furthermore, the tradeoff parameter of MSAGL is tuned adaptively in order to find the projection direction optimal for revealing the hidden structural information. The validity and effectiveness of this approach are illustrated by applying the proposed technique to the Tennessee Eastman process simulation under multiple operation conditions. The results demonstrate the advantages of the proposed method over conventional eigendecomposition-based monitoring methotis.
chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estim...
详细信息
chemical spills on complex geometry are difficult to model due to the uneven concentration distribution caused by air flow over ground obstacles. Computational fluid dynamics(CFD) is one of the powerful tools to estimate the building-resolving wind flow as well as pollutant dispersion. However, it takes too much time and requires enormous computational power in emergency situations. As a time demanding task, the estimation of the chemical spill consequence for emergency response requires abundant wind field information. In this paper, a comprehensive wind field reconstruction framework is proposed, providing the ability of parameter tuning for best reconstruction accuracy. The core of the framework is a data regression model built on principal component analysis(PCA) and extreme learning machine(ELM). To improve the accuracy, the wind field estimation from the regression model is further revised from local wind observations. The optimal placement of anemometers is provided based on the maximum projection on minimum eigenspace(MPME) algorithm. The fire dynamic simulator(FDS) generates high-resolution data of wind flow over complex geometries for the framework to be implemented. The reconstructed wind field is evaluated against simulation data and an overall reconstruction error of 9% is achieved. When used in real case,the error increases to around 12% since no convergence check is available. With parameter tuning abilities,the proposed framework provides an efficient way of reconstructing the wind flow in congested areas.
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...
详细信息
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on fe...
详细信息
Depth information is important for autonomous systems to perceive environments and estimate their own state. Traditional depth estimation methods, like structure from motion and stereo vision matching, are built on feature correspondences of multiple viewpoints. Meanwhile, the predicted depth maps are sparse. Inferring depth information from a single image(monocular depth estimation) is an ill-posed problem. With the rapid development of deep neural networks, monocular depth estimation based on deep learning has been widely studied recently and achieved promising performance in accuracy. Meanwhile, dense depth maps are estimated from single images by deep neural networks in an end-to-end manner. In order to improve the accuracy of depth estimation, different kinds of network frameworks, loss functions and training strategies are proposed subsequently. Therefore, we survey the current monocular depth estimation methods based on deep learning in this review. Initially, we conclude several widely used datasets and evaluation indicators in deep learning-based depth estimation. Furthermore, we review some representative existing methods according to different training manners: supervised, unsupervised and semi-supervised. Finally, we discuss the challenges and provide some ideas for future researches in monocular depth estimation.
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip...
详细信息
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.
暂无评论