The performance evaluation of the process industry, which has been a popular topic nowadays, can not only find the weakness and verify the resilience and reliability of the process, but also provide some suggestions t...
详细信息
The performance evaluation of the process industry, which has been a popular topic nowadays, can not only find the weakness and verify the resilience and reliability of the process, but also provide some suggestions to improve the process benefits and efficiency. Nevertheless, the performance assessment principally concentrates upon some parts of the entire system at present, for example the controller assessment. Although some researches focus on the whole process, they aim at discovering the relationships between profit, society, policies and so forth, instead of relations between overall performance and some manipulated variables, that is, the total plant performance. According to the big data of different performance statuses, this paper proposes a hierarchical framework to select some structured logic rules from monitored variables to estimate the current state of the process. The variables related to safety and profits are regarded as key factors to performance evaluation. To better monitor the process state and observe the performance variation trend of the process, a classificationvisualization method based on kernel principal component analysis(KPCA) and self-organizing map(SOM) is established. The dimensions of big data produced by the process are first reduced by KPCA and then the processed data will be mapped into a two-dimensional grid chart by SOM to evaluate the performance status. The monitoring method is applied to the Tennessee Eastman process. Monitoring results indicate that off-line and on-line performance status can be well detected in a two-dimensional diagram.
Equipment selection for industrial process usually requires the extensive participation of industrial experts and technologists, which causes a serious waste of resources. This work presents an equipment selection kno...
详细信息
Equipment selection for industrial process usually requires the extensive participation of industrial experts and technologists, which causes a serious waste of resources. This work presents an equipment selection knowledge base system for industrial styrene process(S-ESKBS) based on the ontology technology. This structure includes a low-level knowledge base and a top-level interactive application. As the core part of the S-ESKBS, the low-level knowledge base consists of the equipment selection ontology library, equipment selection rule set and Pellet inference engine. The top-level interactive application is implemented using S-ESKBS, including the parsing storage layer, inference query layer and client application layer. Case studies for the industrial styrene process equipment selection of an analytical column and an alkylation reactor are demonstrated to show the characteristics and implementability of the S-ESKBS.
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a cla...
详细信息
A multivariate method for fault diagnosis and process monitoring is proposed. This technique is based on a statistical pattern(SP) framework integrated with a self-organizing map(SOM). An SP-based SOM is used as a classifier to distinguish various states on the output map, which can visually monitor abnormal states. A case study of the Tennessee Eastman(TE) process is presented to demonstrate the fault diagnosis and process monitoring performance of the proposed method. Results show that the SP-based SOM method is a visual tool for real-time monitoring and fault diagnosis that can be used in complex chemical *** with other SOM-based methods, the proposed method can more efficiently monitor and diagnose faults.
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus...
详细信息
Formation control and obstacle avoidance for multi-agent systems have attracted more and more attention. In this paper, the problems of formation control and obstacle avoidance are investigated by means of a consensus algorithm. A novel distributed control model is proposed for the multi-agent system to form the anticipated formation as well as achieve obstacle avoidance. Based on the consensus algorithm, a distributed control function consisting of three terms (formation control term, velocity matching term, and obstacle avoidance term) is presented. By establishing a novel formation control matrix, a formation control term is constructed such that the agents can converge to consensus and reach the anticipated formation. A new obstacle avoidance function is developed by using the modified potential field approach to make sure that obstacle avoidance can be achieved whether the obstacle is in a dynamic state or a stationary state. A velocity matching term is also put forward to guarantee that the velocities of all agents converge to the same value. Furthermore, stability of the control model is proven. Simulation results are provided to demonstrate the effectiveness of the proposed control.
Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively...
详细信息
Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling *** proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance.
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...
详细信息
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
To solve dynamic optimization problem of chemicalprocess (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...
详细信息
To solve dynamic optimization problem of chemicalprocess (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination ...
详细信息
This paper addresses the problem of adaptive neural control for a class of uncertain pure-feedback nonlinear systems with multiple unknown state time-varying delays and unknown dead-zone. Based on a novel combination of the Razumikhin functional method, the backstepping technique and the neural network parameterization, an adaptive neural control scheme is developed for such systems. All closed-loop signals are shown to be semiglobally uniformly ultimately bounded, and the tracking error remains in a small neighborhood of the origin. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control schemes.
This paper investigates the finite-horizon distributionally robust mixed-integer control (DRMIC) of uncertain linear systems. However, deriving an optimal causal feedback control policy to this DRMIC problem is comput...
详细信息
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...
详细信息
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
暂无评论