The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...
详细信息
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were *** variations in impurity levels concerning gelatin concentration were *** the gelatin and In3+concentration were moderately positively correlated with the Pb *** Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl *** Bi element content was positively linked to the electrode *** the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually ***,a critical current density of 45 A·m^(-2) was identified in this behavior.
Quantum-confined CsPbBr_(3) perovskites are promising blue emitters for ultra-high-definition displays,but their soft lattice caused by highly ionic nature has a limited ***,we endow CsPbBr_(3) nanoplatelets(NPLs)with...
详细信息
Quantum-confined CsPbBr_(3) perovskites are promising blue emitters for ultra-high-definition displays,but their soft lattice caused by highly ionic nature has a limited ***,we endow CsPbBr_(3) nanoplatelets(NPLs)with atomic crystal-like structural rigidity through proper surface engineering,by using strongly bound N-dodecylbenzene sulfonic acid(DBSA).A stable,rigid crystal structure,as well as uniform,orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage,by switching from molecular clusters to mono-octahedra,while interaction with DBSA resulted in formation of a Cs_(x)O monolayer shell capping the NPL *** a result,both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA,which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand ***,rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films,which facilitates efficient charge injection and *** photoluminescence of the produced CsPbBr_(3) NPLs is bright(nearly unity emission quantum yield)and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K,while the bandwidth of the electroluminescence(peaked at 460 nm)also reaches a record-narrow value of 15 nm at room *** value corresponds to the CIE coordinates of(0.141,0.062),which meets Rec.2020 standards for ultra-high-definition displays.
The neutral layer (NL) strategy is a key technique for improving the bendability of flexible electronic devices. In this study, by considering a three-layer structure as an example, the results obtained by finite elem...
The neutral layer (NL) strategy is a key technique for improving the bendability of flexible electronic devices. In this study, by considering a three-layer structure as an example, the results obtained by finite element analysis (FEA) showed that the NL gradually moved to the top surface of the film as the film thickness and Young’s modulus increased, which are similar to the results produced by theoretical calculations. Subsequently, we optimized the thickness of a single NL structure and the failure bending radius of an indium tin oxide (ITO) electrode was reduced by 50% after optimization. In order to address the problems that affect the design of a single NL, we used optical clear adhesive (OCA) to generate multiple NLs. The FEA method was again applied to the structure and the results showed that decreasing the elastic modulus of the OCA and film thickness could reduce the maximum strain in the film. Finally, the effects of the OCA parameters on the protection of a multiple-layer ITO electrode structure were verified in bending experiments, which showed that the strain on ITO could be reduced from 5.6% to almost 0 in the two-electrode structure. The proposed strategies for designing single and multiple NLs can provide some guidance to facilitate optimizing the electronic infrastructure of flexible devices.
With the wide application of display and lighting devices, the potential injury to human eyes due to the blue light has been attracting significant attention. While current anti-blue light films are complex, costly an...
详细信息
In this paper, the effect of the printing parameters on the forming behavior of dot, line and plane for hafnium aluminum oxide (HAO) is thorough investigated by simulation and experiment. At first, the spreading proce...
详细信息
目前,商用的深蓝有机发光二极管(OLED)使用的三重态-三重态融合(TTF)型发光材料只能捕获50%的三重态(T_(1))激子,导致其器件效率较低.基于窄带蓝色发射体的热激活延迟荧光(TADF)和超荧光策略可以实现接近100%的激子利用率,然而,在发射层(EML)中停留的高能量T_(1)激子通常会导致不可避免的分子降解,从而限制了器件的使用寿命.为了解决这一问题,本文研究了一种TTF-杂化局域-电荷转移态(HLCT)一体化分子,旨在通过多个激子回收通道降低EML内T_(1)激子的密度,从而提高高效深蓝OLED的稳定性.通过TTF过程回收T_(1)激子,通过HLCT过程利用高能三重态(Tn)激子,可以提高EML中三重态激子的利用率.此外,低浓度掺杂的TTF-HLCT分子在TADF体系中可以减轻T_(1)激子猝灭造成的效率损失.最后,实现了外量子效率(EQE)为25.9%、CIE为(0.131,0.050)、蓝光指数(CE由CIEy校准)为312 cd A^(−1) CIE_(y)^(−1)的顶发射OLED,并且其寿命T90@1000 cd m^(−2)从0.5小时延长到6.1小时.本工作揭示了低浓度TTF-HLCT分子掺杂的潜力,作为一种可行的解决方案,可以最大限度地减少效率猝灭,并解决蓝光OLED的稳定性问题.
Computer-generated holography (CGH) is one of promising technologies in wavefront engineering, and multiplexing holography brings more information channels. Inspired by code division multiplexing (CDM) in communicatio...
详细信息
暂无评论