咨询与建议

限定检索结果

文献类型

  • 114 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 理学
    • 64 篇 数学
    • 42 篇 统计学(可授理学、...
    • 9 篇 物理学
    • 9 篇 生物学
    • 7 篇 系统科学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 3 篇 地质学
  • 60 篇 工学
    • 42 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 9 篇 信息与通信工程
    • 7 篇 生物工程
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 电子科学与技术(可...
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 3 篇 安全科学与工程
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 11 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 农学
    • 4 篇 作物学
  • 5 篇 医学
    • 3 篇 临床医学
    • 3 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 4 篇 machine learning
  • 3 篇 semantic segment...
  • 3 篇 covariance matri...
  • 3 篇 hypothesis testi...
  • 3 篇 training
  • 2 篇 proportional
  • 2 篇 object detection
  • 2 篇 length-biased da...
  • 2 篇 three-dimensiona...
  • 2 篇 signal encoding
  • 2 篇 neural networks
  • 2 篇 hazards
  • 2 篇 contrastive lear...
  • 2 篇 em algorithm
  • 2 篇 model
  • 2 篇 mean square erro...
  • 2 篇 semantics
  • 2 篇 length-biased
  • 2 篇 functional princ...
  • 2 篇 feature extracti...

机构

  • 20 篇 key laboratory o...
  • 11 篇 school of statis...
  • 10 篇 key laboratory o...
  • 7 篇 school of statis...
  • 6 篇 key laboratory o...
  • 6 篇 key laboratory o...
  • 6 篇 school of comput...
  • 6 篇 shanghai key lab...
  • 5 篇 school of statis...
  • 5 篇 east china norma...
  • 4 篇 key laboratory o...
  • 4 篇 shanghai key lab...
  • 4 篇 xiamen universit...
  • 4 篇 tencent youtu la...
  • 3 篇 key laboratory o...
  • 3 篇 nyu-ecnu institu...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 3 篇 youtu lab tencen...
  • 3 篇 beihang universi...

作者

  • 11 篇 sun li
  • 11 篇 li qingli
  • 8 篇 yong zhou
  • 8 篇 shen yunhang
  • 8 篇 lin shaohui
  • 5 篇 riquan zhang
  • 5 篇 zhou yingchun
  • 4 篇 zhang baochang
  • 4 篇 tang yanlin
  • 4 篇 xu fangjun
  • 4 篇 xiaozhou wang
  • 4 篇 wei jiaqin
  • 4 篇 yin mingyu
  • 4 篇 zhang riquan
  • 4 篇 yu zhou
  • 3 篇 shaohui lin
  • 3 篇 yibo yan
  • 3 篇 li peili
  • 3 篇 zhou yong
  • 3 篇 chen juan

语言

  • 114 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Key Laboratory of Advanced Theory and Application in Statistics and Data Science"
121 条 记 录,以下是91-100 订阅
排序:
An efficient semismooth Newton method for adaptive sparse signal recovery problems
arXiv
收藏 引用
arXiv 2021年
作者: Ding, Yanyun Zhang, Haibin Li, Peili Xiao, Yunhai Department of Operations Research and Information Engineering Beijing University of Technology Beijing100124 China School of Statistics Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE East China Normal University Shanghai200062 China School of Mathematics and Statistics Henan University Kaifeng475000 China
We know that compressive sensing can establish stable sparse recovery results from highly undersampled data under a restricted isometry property condition. In reality, however, numerous problems are coherent, and vast... 详细信息
来源: 评论
Variable screening in multivariate linear regression with high-dimensional covariates
收藏 引用
Statistical theory and Related Fields 2022年 第3期6卷 241-253页
作者: Shiferaw B.Bizuayehu Lu Li Jin Xu School of Statistics East China Normal UniversityShanghaiPeople’s Republic of China School of Mathematical Sciences Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE East China Normal UniversityShanghaiPeople’s Republic of China
We propose two variable selection methods in multivariate linear regression with highdimensional *** first method uses a multiple correlation coefficient to fast reduce the dimension of the relevant predictors to a mo... 详细信息
来源: 评论
A review of distributed statistical inference
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Yuan Liu, Weidong Wang, Hansheng Wang, Xiaozhou Yan, Yibo Zhang, Riquan School of Statistics Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE East China Normal University Shanghai China School of Mathematical Sciences Key Lab of Artificial Intelligence - MOE Shanghai Jiao Tong University Shanghai China Guanghua School of Management Peking University Beijing China
The rapid emergence of massive datasets in various fields poses a serious challenge to traditional statistical methods. Meanwhile, it provides opportunities for researchers to develop novel algorithms. Inspired by the... 详细信息
来源: 评论
Derivatives of local times for some Gaussian fields
arXiv
收藏 引用
arXiv 2019年
作者: Hong, Minhao Xu, Fangjun School of Statistics East China Normal University Shanghai200262 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE School of Statistics East China Normal University Shanghai200062 China NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai 3663 Zhongshan Road North Shanghai200062 China
In this article, we consider derivatives of local time for a (2, d)-Gaussian field Z = {Z(t, s) = XtH1 − XeH2 , s, t ≥ 0}, s where XH1 and XeH2 are two independent processes from a class of d-dimensional centered Gau... 详细信息
来源: 评论
Kernel entropy estimation for long memory linear processes with infinite variance
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Hui Xu, Fangjun School of Statistics East China Normal University Shanghai200262 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE School of Statistics East China Normal University Shanghai200062 China NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai 3663 Zhongshan Road North Shanghai200062 China
Let X = {Xn : n ∈ N} be a long memory linear process with innovations in the domain of attraction of an α-stable law (0 RR f 2(x) dx by using the kernel estimator X 2 Tn(hn) = n(n − 1)hn 1≤jn K (Xih−nXj) . The simu... 详细信息
来源: 评论
Derivatives of local times for some Gaussian fields II
arXiv
收藏 引用
arXiv 2020年
作者: Hong, Minhao Xu, Fangjun School of Statistics East China Normal University Shanghai200262 China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE School of Statistics East China Normal University Shanghai200062 China NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai 3663 Zhongshan Road North Shanghai200062 China
Given a (2, d)-Gaussian field (formula presented), s where XH1 and XeH2 are independent d-dimensional centered Gaussian processes satisfying certain properties, we will give the necessary condition for existence of de... 详细信息
来源: 评论
A hybrid deep learning method for finite-horizon mean-field game problems
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Yu Jin, Zhuo Wei, Jiaqin Yin, George Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE School of Statistics East China Normal University Shanghai200062 China Department of Actuarial Studies and Business Analytics Macquarie University NSW2109 Australia Department of Mathematics University of Connecticut Storrs CT06269-1009 United States
This paper develops a new deep learning algorithm to solve a class of finite-horizon mean-field games. The proposed hybrid algorithm uses Markov chain approximation method combined with a stochastic approximation-base... 详细信息
来源: 评论
Mean-variance portfolio selection with dynamic attention behavior in a hidden Markov model
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Yu Jin, Zhuo Wei, Jiaqin Yin, George Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE School of Statistics East China Normal University Shanghai200062 China Department of Actuarial Studies and Business Analytics Macquarie University NSW2109 Australia Department of Mathematics University of Connecticut StorrsCT06269-1009 United States
In this paper, we study closed-loop equilibrium strategies for mean-variance portfolio selection problem in a hidden Markov model with dynamic attention behavior. In addition to the investment strategy, the investor’... 详细信息
来源: 评论
HYPOTHESIS TEST ON A MIXTURE FORWARD-INCUBATION-TIME EPIDEMIC MODEL WITH application TO COVID-19 OUTBREAK
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Chunlin Li, Pengfei Liu, Yukun Zhou, Xiao-Hua Qin, Jing Department of Statistics and Data Science School of Economics Wang Yanan Institute for Studies in Economics MOE Key Lab of Econometrics Fujian Key Lab of Statistics Xiamen University Xiamen China Department of Statistics and Actuarial Sciences University of Waterloo Canada Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE School of Statistics East China Normal University Shanghai China Department of Biostatistics School of Public Health Peking University Beijing China National Institute of Allergy and Infectious Diseases National Institutes of Health United States
The distribution of the incubation period of the novel coronavirus disease that emerged in 2019 (COVID-19) has crucial clinical implications for understanding this disease and devising effective disease-control measur... 详细信息
来源: 评论
Robust Online Detection in Serially Correlated Directed Network
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Miaomiao Zhou, Yuhao Tsung, Fugee Key Laboratory of Advanced Theory and Application in Statistics and Data Science MOE Academy of Statistics and Interdisciplinary Sciences East China Normal University Shanghai China Department of Statistics and Operations Research University of North Carolina at Chapel Hill Chapel HillNC27599 United States Department of Industrial Engineering and Decision Analytics Hong Kong University of Science and Technology Kowloon Hong Kong
As the complexity of production processes increases, the diversity of data types drives the development of network monitoring technology. This paper mainly focuses on an online algorithm to detect serially correlated ... 详细信息
来源: 评论