咨询与建议

限定检索结果

文献类型

  • 114 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 理学
    • 64 篇 数学
    • 42 篇 统计学(可授理学、...
    • 9 篇 物理学
    • 9 篇 生物学
    • 7 篇 系统科学
    • 5 篇 化学
    • 3 篇 地球物理学
    • 3 篇 地质学
  • 60 篇 工学
    • 42 篇 计算机科学与技术...
    • 36 篇 软件工程
    • 9 篇 信息与通信工程
    • 7 篇 生物工程
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 电气工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 3 篇 电子科学与技术(可...
    • 3 篇 化学工程与技术
    • 3 篇 生物医学工程(可授...
    • 3 篇 安全科学与工程
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 11 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 5 篇 农学
    • 4 篇 作物学
  • 5 篇 医学
    • 3 篇 临床医学
    • 3 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 4 篇 machine learning
  • 3 篇 semantic segment...
  • 3 篇 covariance matri...
  • 3 篇 hypothesis testi...
  • 3 篇 training
  • 2 篇 proportional
  • 2 篇 object detection
  • 2 篇 length-biased da...
  • 2 篇 three-dimensiona...
  • 2 篇 signal encoding
  • 2 篇 neural networks
  • 2 篇 hazards
  • 2 篇 contrastive lear...
  • 2 篇 em algorithm
  • 2 篇 model
  • 2 篇 mean square erro...
  • 2 篇 semantics
  • 2 篇 length-biased
  • 2 篇 functional princ...
  • 2 篇 feature extracti...

机构

  • 20 篇 key laboratory o...
  • 11 篇 school of statis...
  • 10 篇 key laboratory o...
  • 7 篇 school of statis...
  • 6 篇 key laboratory o...
  • 6 篇 key laboratory o...
  • 6 篇 school of comput...
  • 6 篇 shanghai key lab...
  • 5 篇 school of statis...
  • 5 篇 east china norma...
  • 4 篇 key laboratory o...
  • 4 篇 shanghai key lab...
  • 4 篇 xiamen universit...
  • 4 篇 tencent youtu la...
  • 3 篇 key laboratory o...
  • 3 篇 nyu-ecnu institu...
  • 3 篇 key laboratory o...
  • 3 篇 key laboratory o...
  • 3 篇 youtu lab tencen...
  • 3 篇 beihang universi...

作者

  • 11 篇 sun li
  • 11 篇 li qingli
  • 8 篇 yong zhou
  • 8 篇 shen yunhang
  • 8 篇 lin shaohui
  • 5 篇 riquan zhang
  • 5 篇 zhou yingchun
  • 4 篇 zhang baochang
  • 4 篇 tang yanlin
  • 4 篇 xu fangjun
  • 4 篇 xiaozhou wang
  • 4 篇 wei jiaqin
  • 4 篇 yin mingyu
  • 4 篇 zhang riquan
  • 4 篇 yu zhou
  • 3 篇 shaohui lin
  • 3 篇 yibo yan
  • 3 篇 li peili
  • 3 篇 zhou yong
  • 3 篇 chen juan

语言

  • 114 篇 英文
  • 6 篇 其他
  • 1 篇 中文
检索条件"机构=Key Laboratory of Advanced Theory and Application in Statistics and Data Science"
121 条 记 录,以下是61-70 订阅
排序:
Confidence intervals and hypothesis testing for high-dimensional quantile regression: convolution smoothing and debiasing
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 11626-11674页
作者: Yibo Yan Xiaozhou Wang Riquan Zhang School of Statistics East China Normal University Shanghai China School of Statistics Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE East China Normal University Shanghai China School of Statistics and Information Shanghai University of International Business and Economics Shanghai China
ℓ1-penalized quantile regression (ℓ1-QR) is a useful tool for modeling the relationship between input and output variables when detecting heterogeneous effects in the high-dimensional setting. Hypothesis tests can the... 详细信息
来源: 评论
SPD-DDPM: Denoising Diffusion Probabilistic Models in the Symmetric Positive Definite Space
arXiv
收藏 引用
arXiv 2023年
作者: Li, Yunchen Yu, Zhou He, Gaoqi Shen, Yunhang Li, Ke Sun, Xing Lin, Shaohui East China Normal University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science Ministry of Education China Youtu Lab Tencent Shanghai China
Symmetric positive definite (SPD) matrices have shown important value and applications in statistics and machine learning, such as FMRI analysis and traffic prediction. Previous works on SPD matrices mostly focus on d... 详细信息
来源: 评论
Large and moderate deviations for record numbers in some non–nearest neighbor random walks
arXiv
收藏 引用
arXiv 2019年
作者: Li, Yuqiang Yao, Qiang Key Laboratory of Advanced Theory and Application in Statistics and Data Science–MOE School of Statistics East China Normal University China NYU–ECNU Institute of Mathematical Sciences NYU Shanghai China
The deviation principles of record numbers in random walk models have not been completely investigated, especially for the non–nearest neighbor cases. In this paper, we derive the asymptotic probabilities of large an... 详细信息
来源: 评论
Style Transformer for Image Inversion and Editing
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Xueqi Huang, Qiusheng Shi, Zhengyi Li, Siyuan Gao, Changxin Sun, Li Li, Qingli Shanghai Key Laboratory of Multidimensional Information Processing China Key Laboratory of Advanced Theory and Application in Statistics and Data Science East China Normal University Shanghai China Huazhong University of Science and Technology Wuhan China
Existing GAN inversion methods fail to provide latent codes for reliable reconstruction and flexible editing simultaneously. This paper presents a transformer-based image inversion and editing model for pretrained Sty... 详细信息
来源: 评论
Spatially Clustered Varying Coefficient Model
arXiv
收藏 引用
arXiv 2020年
作者: Lin, Fangzheng Tang, Yanlin Zhu, Huichen Zhu, Zhongyi Department of Statistics Fudan University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE School of Statistics East China Normal University China Department of Mathematics Hong Kong University of Science and Technology China
In various applications with large spatial regions, the relationship between the response variable and the covariates is expected to exhibit complex spatial patterns. We propose a spatially clustered varying coefficie... 详细信息
来源: 评论
RecursiveDet: End-to-End Region-based Recursive Object Detection
RecursiveDet: End-to-End Region-based Recursive Object Detec...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jing Zhao Li Sun Qingli Li Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China Key Laboratory of Advanced Theory and Application in Statistics and Data Science East China Normal University Shanghai China
End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within ...
来源: 评论
RecursiveDet: End-to-End Region-based Recursive Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Jing Sun, Li Li, Qingli Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China Key Laboratory of Advanced Theory and Application in Statistics and Data Science East China Normal University Shanghai China
End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within ... 详细信息
来源: 评论
IoU-Enhanced Attention for End-to-End Task Specific Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Jing Wu, Shengjian Sun, Li Li, Qingli Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China Key Laboratory of Advanced Theory and Application in Statistics and Data Science East China Normal University Shanghai China
Without densely tiled anchor boxes or grid points in the image, sparse R-CNN achieves promising results through a set of object queries and proposal boxes updated in the cascaded training manner. However, due to the s... 详细信息
来源: 评论
Causal Mediation Analysis with a Three-Dimensional Image Mediator
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Minghao Zhou, Yingchun Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE Institute of Brain and Education Innovation School of Statistics East China Normal University 3663 North Zhongshan Road Shanghai200062 China
Causal mediation analysis is increasingly abundant in biology, psychology, and epidemiology studies, etc. In particular, with the advent of the big data era, the issue of high-dimensional mediators is becoming more pr... 详细信息
来源: 评论
A hybrid deep learning method for controlled stochastic Kolmogorov systems with regime-switching
A hybrid deep learning method for controlled stochastic Kolm...
收藏 引用
International Conference on Control, Decision and Information Technologies (CoDIT)
作者: Yu Zhang Zhuo Jin Jiaqin Wei School of Statistics Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE East China Normal University Shanghai China Department of Actuarial Studies and Business Analytics Macquarie University NSW Australia
In this paper, we employ numerical methods based on deep learning algorithms for solving controlled stochastic Kolmogorov systems with regime-switching. Different from classical control problems, each component of the... 详细信息
来源: 评论