咨询与建议

限定检索结果

文献类型

  • 203 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 213 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 167 篇 理学
    • 95 篇 物理学
    • 67 篇 数学
    • 48 篇 天文学
    • 46 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 8 篇 生物学
    • 5 篇 化学
  • 80 篇 工学
    • 44 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 14 篇 核科学与技术
    • 9 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 6 篇 生物工程
    • 5 篇 光学工程
    • 5 篇 电气工程
    • 5 篇 生物医学工程(可授...
    • 4 篇 机械工程
    • 4 篇 材料科学与工程(可...
    • 3 篇 力学(可授工学、理...
    • 3 篇 动力工程及工程热...
    • 3 篇 建筑学
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 10 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
  • 4 篇 农学
    • 4 篇 作物学
  • 4 篇 医学
    • 3 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 32 篇 branching fracti...
  • 32 篇 lepton colliders
  • 20 篇 hadronic decays
  • 19 篇 particle decays
  • 15 篇 rare decays
  • 14 篇 bottom mesons
  • 14 篇 leptonic, semile...
  • 11 篇 bottom quark
  • 10 篇 cp violation
  • 10 篇 flavor changing ...
  • 8 篇 quarkonia
  • 8 篇 particle interac...
  • 8 篇 charmed baryons
  • 7 篇 precision measur...
  • 7 篇 particle data an...
  • 6 篇 exotic mesons
  • 5 篇 particle dark ma...
  • 5 篇 electroweak inte...
  • 5 篇 quark model
  • 5 篇 quark mixing

机构

  • 83 篇 indian institute...
  • 82 篇 brookhaven natio...
  • 82 篇 indian institute...
  • 82 篇 university of ha...
  • 82 篇 showa pharmaceut...
  • 82 篇 virginia polytec...
  • 82 篇 high energy acce...
  • 82 篇 department of ph...
  • 82 篇 nara women’s uni...
  • 82 篇 niigata universi...
  • 81 篇 osaka city unive...
  • 81 篇 university of ci...
  • 81 篇 institut für exp...
  • 80 篇 max-planck-insti...
  • 80 篇 yamagata univers...
  • 79 篇 key laboratory o...
  • 79 篇 novosibirsk stat...
  • 79 篇 earthquake resea...
  • 79 篇 budker institute...
  • 79 篇 university of mi...

作者

  • 82 篇 m. starič
  • 82 篇 a. ishikawa
  • 82 篇 m. takizawa
  • 81 篇 h. aihara
  • 81 篇 f. tenchini
  • 79 篇 y. jin
  • 79 篇 k. tanida
  • 79 篇 s. c. lee
  • 78 篇 s. cunliffe
  • 78 篇 g. pakhlova
  • 76 篇 k. inami
  • 76 篇 m. iwasaki
  • 75 篇 y. b. li
  • 75 篇 j. libby
  • 74 篇 v. zhukova
  • 73 篇 d. cinabro
  • 70 篇 k. miyabayashi
  • 70 篇 t. uglov
  • 69 篇 t. v. dong
  • 69 篇 m.-z. wang

语言

  • 202 篇 英文
  • 9 篇 其他
  • 2 篇 中文
检索条件"机构=Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE"
213 条 记 录,以下是21-30 订阅
排序:
Knowledge Transfer Across Modalities for Weakly Supervised Point Cloud Semantic Segmentation
Knowledge Transfer Across Modalities for Weakly Supervised P...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zihan Wang Yunhang Shen Mengtian Li Ke Li Xing Sun Shaohui Lin Lizhuang Ma East China Normal University Tencent Youtu Lab Shanghai University Key Laboratory of Advanced Theory and Application in Statistics and Data Science
Current weakly supervised point cloud semantic segmentation struggles with insufficient utilization of limited annotations in unimodal representation learning due to the sparse and textureless nature of point clouds. ... 详细信息
来源: 评论
Estimation of Scale Transformation for Approximate Periodic Time Series with Long-Term Trend
收藏 引用
Journal of Mathematical Research with applications 2021年 第3期41卷 238-258页
作者: Shujin WU Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE School of Statistics Faculty of Economics and Management East China Normal University
Approximate periodic time series means it has an approximate periodic trend. The so-called approximate periodicity refers that it looks like having periodicity, however the length of each period is not constant such a... 详细信息
来源: 评论
Dynamic Contrastive Knowledge Distillation for Efficient Image Restoration  39
Dynamic Contrastive Knowledge Distillation for Efficient Ima...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhou, Yunshuai Qiao, Junbo Liao, Jincheng Li, Wei Li, Simiao Xie, Jiao Shen, Yunhang Hu, Jie Lin, Shaohui East China Normal University Shanghai China Huawei Noah's Ark Lab China Xiamen University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE China
Knowledge distillation (KD) is a valuable yet challenging approach that enhances a compact student network by learning from a high-performance but cumbersome teacher model. However, previous KD methods for image resto... 详细信息
来源: 评论
A hybrid deep learning method for controlled stochastic Kolmogorov systems with regime-switching
A hybrid deep learning method for controlled stochastic Kolm...
收藏 引用
International Conference on Control, Decision and Information Technologies (CoDIT)
作者: Yu Zhang Zhuo Jin Jiaqin Wei School of Statistics Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE East China Normal University Shanghai China Department of Actuarial Studies and Business Analytics Macquarie University NSW Australia
In this paper, we employ numerical methods based on deep learning algorithms for solving controlled stochastic Kolmogorov systems with regime-switching. Different from classical control problems, each component of the... 详细信息
来源: 评论
Estimation and inference of high-dimensional partially linear regression models with latent factors
arXiv
收藏 引用
arXiv 2025年
作者: Shi, Yanmei Hao, Meiling Tang, Yanlin Guo, Xu School of Statistics Beijing Normal University Beijing China School of Statistics University of International Business and Economics Beijing China Key Laboratory of Advanced Theory and Application in Statistics and Data Science–MOE School of Statistics East China Normal University Shanghai China
In this paper, we introduce a novel high-dimensional Factor-Adjusted sparse Partially Linear regression Model (FAPLM), to integrate the linear effects of high-dimensional latent factors with the nonparametric effects ... 详细信息
来源: 评论
DYNAMIC-LLAVA: EFFICIENT MULTIMODAL LARGE LANGUAGE MODELS VIA DYNAMIC VISION-LANGUAGE CONTEXT SPARSIFICATION
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Wenxuan Zhai, Zijie Shen, Yunhang Cao, Shaosheng Zhao, Fei Xu, Xiangfeng Ye, Zheyu Hu, Yao Lin, Shaohui East China Normal University China Xiamen University China Xiaohongshu Inc China Nanjing University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science MOE China
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation o... 详细信息
来源: 评论
Dynamic Contrastive Knowledge Distillation for Efficient Image Restoration
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Yunshuai Qiao, Junbo Liao, Jincheng Li, Wei Li, Simiao Xie, Jiao Shen, Yunhang Hu, Jie Lin, Shaohui East China Normal University Shanghai China Huawei Noah’s Ark Lab China Xiamen University China Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE China
Knowledge distillation (KD) is a valuable yet challenging approach that enhances a compact student network by learning from a high-performance but cumbersome teacher model. However, previous KD methods for image resto... 详细信息
来源: 评论
Semi-supervised inference for block-wise missing data without imputation
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2024年 第1期25卷 4902-4937页
作者: Shanshan Song Yuanyuan Lin Yong Zhou School of Mathematical Sciences and School of Economics and Management Tongji University Shanghai China Department of Statistics The Chinese University of Hong Kong Hong Kong China Key Laboratory of Advanced Theory and Application in Statistics and Data Science MOE Academy of Statistics and Interdisciplinary Sciences and School of Statistics East China Normal University Shanghai China
We consider statistical inference for single or low-dimensional parameters in a high-dimensional linear model under a semi-supervised setting, wherein the data are a combination of a labelled block-wise missing data s... 详细信息
来源: 评论
A review of distributed statistical inference
收藏 引用
Statistical theory and Related Fields 2022年 第2期6卷 89-99页
作者: Yuan Gao Weidong Liu Hansheng Wang Xiaozhou Wang Yibo Yan Riquan Zhang School of Statistics and Key Laboratory of Advanced Theory and Application in Statistics and Data Science–MOE East China Normal UniversityShanghaiPeople’s Republic of China School of Mathematical Sciences and Key Lab of Articial Intelligence–MOE Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China Guanghua School of Management Peking UniversityBeijingPeople’s Republic of China
The rapid emergence of massive datasets in various fields poses a serious challenge to tra-ditional statistical ***,it provides opportunities for researchers to develop novel *** by the idea of divide-and-conquer,vari... 详细信息
来源: 评论
Partially Linear Single-Index Model in the Presence of Measurement Error
收藏 引用
Journal of Systems science & Complexity 2022年 第6期35卷 2361-2380页
作者: LIN Hongmei SHI Jianhong TONG Tiejun ZHANG Riquan School of Statistics and Information Shanghai University of International Business and EconomicsShanghai 201620China Key Laboratory of Advanced Theory and Application in Statistics and Data Science Ministry of EducationEast China Normal UniversityShanghai 200062China School of Mathematics and Computer Science Shanxi Normal UniversityLinfen 041081China Department of Mathematics Hong Kong Baptist UniversityHongKong 519087China School of Statistics East China Normal UniversityShanghai 200062China
The partially linear single-index model(PLSIM) is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates. This paper considers the PLSIM with measurement erro... 详细信息
来源: 评论