咨询与建议

限定检索结果

文献类型

  • 1,727 篇 会议
  • 1,590 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 3,318 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,144 篇 工学
    • 1,538 篇 计算机科学与技术...
    • 1,289 篇 软件工程
    • 517 篇 信息与通信工程
    • 299 篇 生物工程
    • 289 篇 控制科学与工程
    • 284 篇 电气工程
    • 167 篇 光学工程
    • 167 篇 电子科学与技术(可...
    • 160 篇 生物医学工程(可授...
    • 139 篇 机械工程
    • 110 篇 化学工程与技术
    • 101 篇 交通运输工程
    • 90 篇 仪器科学与技术
    • 76 篇 动力工程及工程热...
    • 75 篇 土木工程
    • 72 篇 建筑学
    • 69 篇 网络空间安全
  • 1,190 篇 理学
    • 648 篇 数学
    • 338 篇 生物学
    • 242 篇 物理学
    • 203 篇 统计学(可授理学、...
    • 129 篇 化学
    • 96 篇 系统科学
  • 595 篇 管理学
    • 349 篇 管理科学与工程(可...
    • 284 篇 图书情报与档案管...
    • 114 篇 工商管理
  • 149 篇 医学
    • 128 篇 临床医学
    • 101 篇 基础医学(可授医学...
    • 62 篇 药学(可授医学、理...
  • 103 篇 法学
    • 84 篇 社会学
  • 62 篇 农学
  • 44 篇 经济学
  • 40 篇 教育学
  • 6 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学

主题

  • 135 篇 feature extracti...
  • 131 篇 semantics
  • 114 篇 training
  • 96 篇 deep learning
  • 68 篇 computational mo...
  • 65 篇 accuracy
  • 60 篇 predictive model...
  • 56 篇 machine learning
  • 56 篇 data models
  • 53 篇 graph neural net...
  • 52 篇 convolution
  • 50 篇 contrastive lear...
  • 48 篇 neural networks
  • 43 篇 object detection
  • 43 篇 reinforcement le...
  • 42 篇 data mining
  • 38 篇 task analysis
  • 36 篇 optimization
  • 36 篇 visualization
  • 36 篇 federated learni...

机构

  • 78 篇 beijing advanced...
  • 68 篇 key laboratory o...
  • 63 篇 college of compu...
  • 61 篇 university of ch...
  • 58 篇 shandong provinc...
  • 58 篇 school of comput...
  • 54 篇 south china univ...
  • 54 篇 national enginee...
  • 52 篇 key laboratory o...
  • 51 篇 peng cheng labor...
  • 46 篇 shandong enginee...
  • 44 篇 school of softwa...
  • 43 篇 school of comput...
  • 41 篇 school of cyber ...
  • 40 篇 school of electr...
  • 39 篇 jiangsu key labo...
  • 37 篇 guangdong key la...
  • 36 篇 key laboratory o...
  • 36 篇 jiangsu key labo...
  • 35 篇 fujian provincia...

作者

  • 42 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 35 篇 tan mingkui
  • 31 篇 jin hai
  • 26 篇 huang qingming
  • 26 篇 xiaolong xu
  • 24 篇 shen linlin
  • 22 篇 hai jin
  • 22 篇 guo wenzhong
  • 21 篇 xu qianqian
  • 20 篇 hu shengshan
  • 20 篇 chen yanping
  • 20 篇 hongyan ma
  • 19 篇 chen huajun
  • 18 篇 niyato dusit
  • 18 篇 xia shuyin
  • 18 篇 wu di
  • 17 篇 guo kun
  • 16 篇 li jianxin
  • 15 篇 peng hao

语言

  • 3,030 篇 英文
  • 250 篇 其他
  • 54 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data Intelligent Computing"
3318 条 记 录,以下是2821-2830 订阅
排序:
The roles of urban buildings and vegetation in adjusting seasonal and daily air temperature  4
The roles of urban buildings and vegetation in adjusting sea...
收藏 引用
4th ISPRS Geospatial Week 2019
作者: Lan, Y. Huang, Z. Guo, R. Zhan, Q. Research Institute for Smart Cities School of Architecture and Urban Planning Shenzhen University Shenzhen China Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services Shenzhen University China Guangdong Key Laboratory of Urban Informatics Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China School of Urban Design Wuhan University Wuhan China
Exploring the spatiotemporal patterns of the relationships between urban indicators and urban temperature is essential to improve the mitigation effectiveness when we intend to adjust built environment for moderating ... 详细信息
来源: 评论
Using NSGA-Ⅲ for optimising biomedical ontology alignment
收藏 引用
CAAI Transactions on Intelligence Technology 2019年 第3期4卷 135-141页
作者: Xingsi Xue Jiawei Lu Junfeng Chen College of Information Science and Engineering Fujian University of TechnologyFuzhouFujianPeople’s Republic of China Intelligent Information Processing Research Center Fujian University of TechnologyFuzhouFujianPeople’s Republic of China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of TechnologyFuzhouFujianPeople’s Republic of China Fujian Key Laboratory for Automotive Electronics and Electric Drive Fujian University of TechnologyFuzhouFujianPeople’s Republic of China College of IOT Engineering Hohai UniversityChangzhouJiangsuPeople’s Republic of China
To support semantic inter-operability between the biomedical information systems, it is necessary to determine the correspondences between the heterogeneous biomedical concepts, which is commonly known as biomedical o... 详细信息
来源: 评论
DSRGAN: Explicitly learning disentangled representation of underlying structure and rendering for image generation without tuple supervision
arXiv
收藏 引用
arXiv 2019年
作者: Hao, Guang-Yuan Yu, Hong-Xing Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Collaborative Innovation Center of High Performance Computing Nudt Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou
We focus on explicitly learning disentangled representation for natural image generation, where the underlying spatial structure and the rendering on the structure can be independently controlled respectively, yet usi... 详细信息
来源: 评论
Improved small gain conditions for input-to-state stability with respect to measurement functions: Discrete time networked system
Improved small gain conditions for input-to-state stability ...
收藏 引用
IEEE Conference on Decision and Control
作者: Yuanqiu Mo Changbin Yu Soura Dasgupta Westlake Institute for Advanced Study Westlake University Hangzhou China College of Artificial Intelligence and Big Data Shandong First Medical University & Shandong Academy of Medical Sciences Jinan China Institute for Intelligent Robots Fudan University Shanghai China Shandong Computer Science Center Shandong Provincial Key Laboratory of Computer Networks China Faculty of Engineering & the Built Environment University of Johannes-Burg Johannesburg South Africa University of Iowa Iowa City Iowa USA
In this paper we study input-to-state stability with respect to measurement functions for discrete time networked systems. In such a networked system, the trajectory of each subsystem is affected by another in each ti... 详细信息
来源: 评论
Deep semantic dictionary learning for multi-label image classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Fengtao Huang, Sheng Xing, Yun School of Big data & Software Engineering Chongqing University Shazheng street NO.174 Shapingba District Chongqing400044 China Ministry of Education Key Laboratory of Dependable Service Computing in Cyber Physical Society Shazheng street NO.174 Shapingba District Chongqing400044 China
Compared with single-label image classification, multi-label image classification is more practical and challenging. Some recent studies attempted to leverage the semantic information of categories for improving multi... 详细信息
来源: 评论
Deep Domain Adaptation for Pavement Crack Detection
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Huijun Yang, Chunhua Li, Ao Huang, Sheng Feng, Xin Ruan, Zhimin Ge, Yongxin College of Computer Science Chongqing University Chongqing400044 China School of Big Data and Software Engineering Chongqing University Chongqing401331 China Chongqing City Management College Chongqing401331 China Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education Chongqing University Chongqing400044 China College of Computer Science And Engineering Chongqing University of Technology Chongqing400054 China Co. Ltd Chongqing400060 China
Deep learning-based pavement cracks detection methods often require large-scale labels with detailed crack location information to learn accurate predictions. In practice, however, crack locations are very difficult t... 详细信息
来源: 评论
Training and inference Time Efficiency Assessment Framework for machine learning algorithms: A case study for hyperspectral image classification
收藏 引用
International Journal of Applied Earth Observation and Geoinformation 2025年 141卷
作者: Zheng, Xiaorou Jia, Jianxin Dong, Shoubin Wang, Yawei Lu, Runuo Chen, Yuwei Wang, Yueming Guangdong Provincial Key Laboratory of Multimodal Big Data Intelligent Analysis School of Computer Science and Engineering South China University of Technology Guangzhou 510006 China Department of Photogrammetry and Remote Sensing Finnish Geospatial Research Institute Espoo FI-02150 Finland Guangzhou Institute of Geography Guangdong Academy of Sciences Guangdong Guangzhou 311100 China Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Zhejiang Hangzhou 310024 China Key Laboratory of Space Active Opto-Electronics Technology Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China The Advanced Laser Technology Laboratory of Anhui Province Hefei 230037 China
The increasing complexity and scale of remote sensing datasets, coupled with the challenges of accurately estimating algorithmic time efficiency, often lead to significant resource waste or even failure when using mac... 详细信息
来源: 评论
A robust and generalized framework for adversarial graph embedding
arXiv
收藏 引用
arXiv 2021年
作者: Li, Jianxin Fu, Xingcheng Peng, Hao Wang, Senzhang Zhu, Shijie Sun, Qingyun Yu, Philip S. He, Lifang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 China State Key Laboratory of Software Development Environment Beihang University Beijing100083 China School of Computer Science and Engineering Central South University Changsha410083 China Department of Computer Science University of Illinois at Chicago ChicagoIL60607 United States Department of Computer Science and Engineering Lehigh University BethlehemPA18015 United States
Graph embedding is essential for graph mining tasks. With the prevalence of graph data in real-world applications, many methods have been proposed in recent years to learn high quality graph embedding vectors various ... 详细信息
来源: 评论
Object tracking by the least spatiotemporal searches
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Zhiyong Han, Lei Chen, Chao Guo, Wenzhong Yu, Zhiwen College of Mathematics and Computer Sciences Fuzhou University Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350108 China School of Computer Science Northwestern Polytechnical University Xi'an710072 China School of Computer Science Chongqing University Chongqing400044 China
Tracking a suspicious car or a person in a city efficiently is crucial in urban safety management. But how can we complete the task with the minimal number of spatiotemporal searches when massive camera records are in... 详细信息
来源: 评论
Integrating ARIMA and Bidirectional LSTM to Predict ETA in Multi-Airport Systems
Integrating ARIMA and Bidirectional LSTM to Predict ETA in M...
收藏 引用
Integrated Communications, Navigation and Surveillance Conference, ICNS
作者: Lechen Wang Xuechun Li Jianfeng Mao School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong China School of Science and Engineering Shenzhen Key Laboratory of IoT Intelligent Systems and Wireless Network Technology The Chinese University of Hong Kong Shenzhen Shenzhen Research Institute of Big Data Shenzhen Guangdong China
Traffic states prediction in air transportation systems is a challenging problem and has not been fully explored because it is subject to many more highly correlated factors and a more complicated traffic management s...
来源: 评论